Skip to main content

HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion

  • Protocol
  • First Online:
Book cover NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Hydroethidine is a fluorogenic probe that in the presence of the superoxide radical anion is oxidized to a red fluorescent product, 2-hydroxyethidium. In cells, hydroethidine is also oxidized to other products, including red fluorescent ethidium. Thus, selective monitoring of 2-hydroxyethidium is required for specific detection of the superoxide radical anion. Here, we provide protocols for HPLC- and LC-MS-based quantitation of 2-hydroxyethidium, among other oxidation products. Also, a protocol for continuous sampling for real-time monitoring of superoxide production using rapid HPLC measurements of 2-hydroxyethidium is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  Google Scholar 

  2. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  CAS  Google Scholar 

  3. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  Google Scholar 

  4. Maghzal GJ, Krause KH, Stocker R, Jaquet V (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53:1903–1918

    Article  CAS  Google Scholar 

  5. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  6. Zielonka J, Kalyanaraman B (2018) Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 128:3–22. https://doi.org/10.1016/j.freeradbiomed.2018.03.032

    Article  CAS  PubMed  Google Scholar 

  7. Zielonka J, Lambeth JD, Kalyanaraman B (2013) On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation. Free Radic Biol Med 65:1310–1314

    Article  CAS  Google Scholar 

  8. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  Google Scholar 

  9. Fernandes DC, Goncalves RC, Laurindo FR (2017) Measurement of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation. Methods Mol Biol (Clifton, NJ) 1527:233–249

    Article  CAS  Google Scholar 

  10. Laurindo FR, Fernandes DC, Santos CX (2008) Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol 441:237–260

    Article  CAS  Google Scholar 

  11. Fernandes DC, Wosniak J Jr, Pescatore LA, Bertoline MA, Liberman M, Laurindo FR, Santos CX (2007) Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 292:C413–C422

    Article  CAS  Google Scholar 

  12. Zielonka J et al (2017) Recent developments in the probes and assays for measurement of the activity of NADPH oxidases. Cell Biochem Biophys 75:335–349

    Article  CAS  Google Scholar 

  13. Zielonka J et al (2016) Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation. J Biol Chem 291:7029–7044

    Article  CAS  Google Scholar 

  14. Zielonka J et al (2014) High-throughput assays for superoxide and hydrogen peroxide design of a screening workflow to identify inhibitors of NADPH oxidases. J Biol Chem 289:16176–16189

    Article  CAS  Google Scholar 

  15. Zielonka J et al (2012) Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J Biol Chem 287:2984–2995

    Article  CAS  Google Scholar 

  16. Zielonka J, Hardy M, Kalyanaraman B (2009) HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Free Radic Biol Med 46:329–338

    Article  CAS  Google Scholar 

  17. Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2008) Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc 3:8–21

    Article  CAS  Google Scholar 

  18. Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2006) The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine. Free Radic Biol Med 41:1050–1057

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grants NCI U01 CA178960 and R01 AA022986 to B.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zielonka, J., Zielonka, M., Kalyanaraman, B. (2019). HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics