Skip to main content

Fully Defined and Xeno-Free Induction of hPSCs into Neural Crest Using Top-Down Inhibition of BMP Signaling

  • Protocol
  • First Online:
Neural Crest Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1976))

Abstract

The neural crest is a transient embryonic tissue that originates from the border of the neural plate prior to delamination and migration throughout the developing embryo, where it contributes to a wide range of different tissues. Defects in neural crest development have been implicated in a variety of different disorders (neurocristopathies) including cancers, neuropathies, craniofacial malformations, and pigment disorders. The differentiation of human pluripotent stem cells (hPSCs) into an in vitro counterpart to neural crest cells holds huge potential for the study of neural crest development, as well as modeling neurocristopathy, carrying out drug discovery experiments and eventually cell replacement therapy. Here we describe a method for generating human neural crest cells from hPSCs that is fully defined and free from animal-derived components. We found that in the absence of serum or bovine serum albumin (BSA), variability in endogenous BMP expression leads to unpredictable differentiation efficiency. In order to control against this issue, we have developed a system termed “top-down inhibition” (TDi) that allows robust neural crest induction as described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vazin T, Chen J, Lee C-T, Amable R, Freed WJ (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23(7):923–930

    Article  Google Scholar 

  2. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701

    Article  CAS  Google Scholar 

  3. Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L (2013) Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 3(4):1140–1152

    Article  CAS  Google Scholar 

  4. Menendez L, Yatskievych TA, Antin PB, Dalton S (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 108(48):19240–19245

    Article  CAS  Google Scholar 

  5. Leung AW, Murdoch B, Salem AF, Prasad MS, Gomez GA, García-Castro MI (2016) WNT/beta-catenin signaling mediates human neural crest induction via a pre-neural border intermediate. Development 143(3):398–410

    Article  CAS  Google Scholar 

  6. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang C-P, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463(7283):958–962

    Article  CAS  Google Scholar 

  7. Chambers SM, Qi Y, Mica Y, Lee G, Zhang X-J, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi S-H, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720

    Article  CAS  Google Scholar 

  8. Hackland JOS, Frith TJR, Thompson O, Marin Navarro A, García-Castro MI, Unger C, Andrews PW (2017) Top-down inhibition of BMP signaling enables robust induction of hPSCs into neural crest in fully defined, Xeno-free conditions. Stem Cell Reports 9(4):1043–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The H9: SOX10 BAC hESC line used in the development of this protocol and in generating the data presented in Fig. 2 was kindly provided by Lorenz Studer, Mark Tomishima, and Yvonne Mica.

Funding: This work was funded by grants from the Medical Research Council (R/143416-14-1) and the European Community’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no 602423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James O. S. Hackland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hackland, J.O.S., Frith, T.J.R., Andrews, P.W. (2019). Fully Defined and Xeno-Free Induction of hPSCs into Neural Crest Using Top-Down Inhibition of BMP Signaling. In: Schwarz, Q., Wiszniak, S. (eds) Neural Crest Cells. Methods in Molecular Biology, vol 1976. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9412-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9412-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9411-3

  • Online ISBN: 978-1-4939-9412-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics