Skip to main content

Addressing Interdisciplinary Difficulties in Developmental Biology/Mathematical Collaborations: A Neural Crest Example

  • Protocol
  • First Online:
Book cover Neural Crest Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1976))

Abstract

Mathematical modeling can allow insight into the biological processes that can be difficult to access by conventional biological means alone. Such projects are becoming increasingly attractive with the appearance of faster and more powerful quantitative techniques in both biological data acquisition and data storage, manipulation, and presentation. However, as is frequent in interdisciplinary research, the main hurdles are not within the mindset and techniques of each discipline but are usually encountered in attempting to meld the different disciplines together. Based upon our experience in applying mathematical methods to investigate how neural crest cells interact to form the enteric nervous system, we present our views on how to pursue biomathematical modeling projects, what difficulties to expect, and how to overcome, or at least survive, these hurdles. The main advice being: persevere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson DW (1917) On growth and form, vol xiv, 1st edn. Cambridge University Press, London and Edinburgh, p 793

    Google Scholar 

  2. Longo DL, Drazen JM (2016) Data Sharing. N Engl J Med 374(3):276–277

    Article  PubMed  Google Scholar 

  3. Landman KA (2016) An interaction with biologists: insights into development and disease. In: Anderssen RS et al (eds) Applications + practical conceptualization + mathematics = fruitful innovation: proceedings of the forum of mathematics for industry 2014. Springer Japan, Tokyo, pp 51–60

    Chapter  Google Scholar 

  4. Newgreen DF et al (2013) Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 382(1):305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Landman KA, Simpson MJ, Newgreen DF (2007) Mathematical and experimental insights into the development of the enteric nervous system and Hirschsprung's disease. Develop Growth Differ 49(4):277–286

    Article  Google Scholar 

  6. Landman KA, Binder BJ, Newgreen DF (2012) In: Bandini GCSaS (ed) Modeling development and disease in our “Second” brain. ACRI 2012, LNCS 7495 ed. 10th International Conference on Cellular Automata for Research and Industry. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  7. Landman KA, Binder B, Newgreen DF (2014) Modeling development and disease in the enteric nervous system. J Cellular Automata 9:95–109

    Google Scholar 

  8. Ouzounis CA (2012) Rise and demise of bioinformatics? Promise and progress. PLoS Comput Biol 8(4):e1002487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40(4):346–358

    Article  CAS  PubMed  Google Scholar 

  10. Whitacre JM (2012) Biological robustness: paradigms, mechanisms, and systems principles. Front Genet 3:67

    PubMed  PubMed Central  Google Scholar 

  11. Mayer J, Khairy K, Howard J (2010) Drawing an elephant with four complex parameters. Am J Phys 78:648–649

    Article  Google Scholar 

  12. Fanelli D (2009) How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS One 4(5):e5738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vanden Berghe P (2016) Advanced 3D optical microscopy in ENS research. Adv Exp Med Biol 891:193–199

    Article  CAS  Google Scholar 

  14. Bissell MJ (2017) Goodbye flat biology—time for the 3rd and the 4th dimensions. J Cell Sci 130(1):3–5

    Article  CAS  PubMed  Google Scholar 

  15. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances-part 1. Pediatr Dev Pathol 5(3):224–247

    Article  CAS  PubMed  Google Scholar 

  16. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances-part 2. Pediatr Dev Pathol 5:329–349

    Article  PubMed  Google Scholar 

  17. Simpson MJ et al (2007) Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol 302(2):553–568

    Article  CAS  PubMed  Google Scholar 

  18. Hackett-Jones EJ et al (2011) On the role of differential adhesion in gangliogenesis in the enteric nervous system. J Theor Biol 287:148–159

    Article  PubMed  Google Scholar 

  19. Newgreen DF et al (1996) Migration of enteric neural crest cells in relation to growth of the gut in avian embryos. Acta Anat (Basel) 157(2):105–115

    Article  CAS  Google Scholar 

  20. Chaturvedi R et al (2005) On multiscale approaches to three-dimensional modelling of morphogenesis. J R Soc Interface 2(3):237–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izaguirre JA et al (2004) CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20(7):1129–1137

    Article  CAS  PubMed  Google Scholar 

  22. Osborne JM et al (2017) Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Comput Biol 13(2):e1005387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Simpson MJ et al (2007) Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys Rev E Stat Nonlinear Soft Matter Phys 76(2 Pt 1):021918

    Article  CAS  Google Scholar 

  24. Cheeseman BL et al (2014) Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation. J R Soc Interface 11(93):20130815

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheeseman BL, Newgreen DF, Landman KA (2014) Spatial and temporal dynamics of cell generations within an invasion wave: a link to cell lineage tracing. J Theor Biol 363:344–356

    Article  PubMed  Google Scholar 

  26. Binder BJ et al (2008) Modeling proliferative tissue growth: a general approach and an avian case study. Phys Rev E Stat Nonlinear Soft Matter Phys 78(3 Pt 1):031912

    Article  CAS  Google Scholar 

  27. Simpson MJ, Landman KA, Newgreen DF (2006) Chemotactic and diffusive migration on a non-uniformly growing domain: numerical algorithm development and applications. J Computat and App Math 192:282–300

    Article  Google Scholar 

  28. Wang X et al (2011) Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141(3):992–1002. e1-6

    Article  PubMed  Google Scholar 

  29. Nagy N et al (2007) Pelvic plexus contributes ganglion cells to the hindgut enteric nervous system. Dev Dyn 236(1):73–83

    Article  PubMed  Google Scholar 

  30. Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35(27):9879–9888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landman KA et al (2011) Building stable chains with motile agents: insights into the morphology of enteric neural crest cell migration. J Theor Biol 276(1):250–268

    Article  PubMed  Google Scholar 

  32. Young HM et al (2014) Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 12(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Allan IJ, Newgreen DF (1980) The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am J Anat 157(2):137–154

    Article  CAS  PubMed  Google Scholar 

  34. Young HM et al (1998) A single rostrocaudal colonization of the rodent intestine by enteric neuron precursors is revealed by the expression of Phox2b, Ret, and p75 and by explants grown under the kidney capsule or in organ culture. Dev Biol 202(1):67–84

    Article  CAS  PubMed  Google Scholar 

  35. Young HM et al (2004) Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 270(2):455–473

    Article  CAS  PubMed  Google Scholar 

  36. Stramer BM et al (2013) Rediscovering contact inhibition in the embryo. J Microsc 251(3):206–211

    Article  CAS  PubMed  Google Scholar 

  37. Young HM et al (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229(2):503–516

    Article  CAS  PubMed  Google Scholar 

  38. Simpson MJ et al (2006) Looking inside an invasion wave of cells using continuum models: proliferation is the key. J Theor Biol 243(3):343–360

    Article  PubMed  Google Scholar 

  39. Nishiyama C et al (2012) Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 15(9):1211–1218

    Article  CAS  PubMed  Google Scholar 

  40. Harrison C, Wabbersen T, Shepherd IT (2014) In vivo visualization of the development of the enteric nervous system using a Tg(−8.3bphox2b:Kaede) transgenic zebrafish. Genesis 52(12):985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kulesa PM et al (2008) Neural crest invasion is a spatially-ordered progression into the head with higher cell proliferation at the migratory front as revealed by the photoactivatable protein, KikGR. Dev Biol 316(2):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Binder BJ et al (2012) Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut. Bull Math Biol 74(2):474–490

    Article  PubMed  Google Scholar 

  43. Barlow AJ et al (2008) Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 135(9):1681–1691

    Article  CAS  PubMed  Google Scholar 

  44. Newgreen DF et al (2017) Differential clonal expansion in an invading cell population: clonal advantage or dumb luck? Cells Tissues Organs 203(2):105–113

    Article  CAS  PubMed  Google Scholar 

  45. Jung PM (1995) Hirschsprung's disease: one surgeon's experience in one institution. J Pediatr Surg 30(5):646–651

    Article  CAS  PubMed  Google Scholar 

  46. Binder BJ et al (2015) Incomplete penetrance: the role of stochasticity in developmental cell colonization. J Theor Biol 380:309–314

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald F. Newgreen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Newgreen, D.F., Landman, K.A., Osborne, J.M. (2019). Addressing Interdisciplinary Difficulties in Developmental Biology/Mathematical Collaborations: A Neural Crest Example. In: Schwarz, Q., Wiszniak, S. (eds) Neural Crest Cells. Methods in Molecular Biology, vol 1976. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9412-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9412-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9411-3

  • Online ISBN: 978-1-4939-9412-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics