Skip to main content

Design of Eco-Friendly Gold Nanoparticles for Cancer Treatment

  • Protocol
  • First Online:
Book cover RNA Interference and Cancer Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

Gold nanoparticles (GNPs) have emerged as a potential scaffold for a wide range of biomedical applications such as biosensing, drug delivery, and imaging. However, the toxicity of nanoparticles remains a challenge for using them in biological system. The morphology and surface chemistry of GNP can be manipulated by their method of preparation. GNP can be synthesized and functionalized by various methods. This chapter illustrates the synthesis of highly biocompatible GNP using a natural gum, i.e., xanthan gum (XG). Moreover, due to the presence of mannose moiety in XG, these XG-stabilized GNP may also act as self-targeted drug carriers for the delivery of chemotherapeutic agents/siRNA/shRNA to mannose receptor overexpressing cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida JP, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3):503–514

    Article  CAS  PubMed  Google Scholar 

  2. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1):65–71

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira R, Zhao P, Li N et al (2013) Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Adv Colloid Interf Sci 199(200):44–58

    Google Scholar 

  4. Chen YH, Tsai CY, Huang PY et al (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722

    Article  CAS  PubMed  Google Scholar 

  5. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661

    Article  CAS  PubMed  Google Scholar 

  6. Aryal S, Grailer JJ, Pilla S et al (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879–7884

    Article  CAS  Google Scholar 

  7. Prabaharan M, Grailer JJ, Pilla S et al (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    Article  CAS  PubMed  Google Scholar 

  8. Burygin GL, Khlebtsov BN, Shantrokha AN et al (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4(8):794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 148:122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jung J, Park S, Hong S et al (2014) Synthesis of gold nanoparticles with glycosides: synthetic trends based on the structures of glycones and aglycones. Carbohydr Res 386:57–61

    Article  CAS  PubMed  Google Scholar 

  11. Khan MS, Vishakantea D, Siddaramaiah H (2013) Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interf Sci 199–200:44–58

    Article  Google Scholar 

  12. Saha B, Bhattacharya J, Mukherjee A et al (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2(12):614–622

    Article  CAS  PubMed Central  Google Scholar 

  13. Mirza AZ, Shamshad H (2011) Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur J Med Chem 46(5):1857–1860

    Article  CAS  PubMed  Google Scholar 

  14. Rouhana LL, Jaber JA, Schlenoff JB (2007) Aggregation-resistant water-soluble gold nanoparticles. Langmuir 23:12799–12801

    Article  CAS  PubMed  Google Scholar 

  15. Dhar S, Reddy EM, Shiras A et al (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(33):10244–10250

    Article  CAS  PubMed  Google Scholar 

  16. Tiraferri A, Chen KL, Sethi R et al (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324(1–2):71–79

    Article  CAS  PubMed  Google Scholar 

  17. Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

    Article  CAS  PubMed  Google Scholar 

  18. Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 14:1239–1253

    Article  Google Scholar 

  19. Jian H, Zhu L, Zhang W et al (2012) Galactomannan (from Gleditsia sinensis Lam.) and xanthan gum matrix tablets for controlled delivery of theophylline: in vitro drug release and swelling behaviour. Carbohydr Polym 87:2176–2182

    Article  CAS  Google Scholar 

  20. Sereno NM, Hill SE, Mitchell JR (2007) Impact of the extrusion process on xanthan gum behaviour. Carbohydr Res 342(10):1333–1342

    Article  CAS  PubMed  Google Scholar 

  21. Sharma BR, Naresh L, Dhuldhoya NC et al (2006) Xanthan gum—a boon to food industry. Food promotion chronicle 1(5):27–30

    Google Scholar 

  22. Phaechamud T, Ritthidej GC (2007) Sustained-release from layered matrix system comprising chitosan and xanthan gum. Drug Dev Ind Pharm 33:595–605

    Article  CAS  PubMed  Google Scholar 

  23. Santos H, Veiga F, Pina ME et al (2005) Compaction compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int J Pharm 295(1–2):15–27

    Article  CAS  PubMed  Google Scholar 

  24. Sinha VR, Mittal BR, Bhutani KK et al (2004) Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int J Pharm 269(1):101–108

    Article  CAS  PubMed  Google Scholar 

  25. Desplanques S, Renou F, Grisel M et al (2012) Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll 27:401–410

    Article  CAS  Google Scholar 

  26. Fan G, Cang L, Qin W et al (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72

    Article  CAS  Google Scholar 

  27. Comba S, Dalmazzo D, Santagata E et al (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2–3):598–605

    Article  CAS  PubMed  Google Scholar 

  28. Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947

    Article  PubMed  Google Scholar 

  29. Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    Article  CAS  PubMed  Google Scholar 

  30. Laginha KM, Verwoert S, Charrois GJR et al (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11:6944–6949

    Article  CAS  PubMed  Google Scholar 

  31. Gu YJ, Cheng J, Man CW et al (2012) Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 8(2):204–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work described in this book chapter has been published as Deep Pooja et al., Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers 2014;110:1–9. The work is reused after permission from Elsevier under license number 4236430677285.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pooja, D., Sistla, R. (2019). Design of Eco-Friendly Gold Nanoparticles for Cancer Treatment. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics