Skip to main content

Protocols of IATC, DSC, and PPC: The Multistate Structural Transition of Cytochrome c

  • Protocol
  • First Online:
Microcalorimetry of Biological Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

  • 1263 Accesses

Abstract

The recent development of high-precision calorimeters allows us to monitor the structural transition of biomolecules by calorimetry and thereby characterize the thermodynamic property changes accompanying three-dimensional structure changes. We developed isothermal acid-titration calorimetry (IATC) to evaluate the pH dependence of protein enthalpy. Using the double deconvolution method with precise differential scanning calorimetry (DSC), we revealed that the MG state is an equilibrium intermediate state of the reversible thermal three-state transition of the protein, and we successfully determined its volumetric properties by pressure perturbation calorimetry (PPC). Our findings underscore the importance of a precise calorimetry and analysis model for protein research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khechinashvili NN, Privalov PL, Tiktopulo EI (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Lett 30:57–60

    Article  CAS  Google Scholar 

  2. Privalov PL, Khechinashvili NN (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684

    Article  CAS  Google Scholar 

  3. Pfeil W, Privalov PL (1976) Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. Biophys Chem 4:23–32

    Article  CAS  Google Scholar 

  4. Pfeil W, Privalov PL (1976) Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys Chem 4:33–40

    Article  CAS  Google Scholar 

  5. Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  CAS  Google Scholar 

  6. Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104

    Article  CAS  Google Scholar 

  7. Privalov PL, Griko Y u V, Venyaminov SYU, Kutyshenko VP (1986) Cold denaturation of myoglobin. J Mol Biol 190:487–498

    Article  CAS  Google Scholar 

  8. Kuroki R, Inaka K, Taniyama Y, Kidokoro S, Matsushima M, Kikuchi M, Yutani K (1992) Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95. Biochemistry 31:8323–8328

    Article  CAS  Google Scholar 

  9. Makhatadze GI, Privalov PL (1993) Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J Mol Biol 232:639–659

    Article  CAS  Google Scholar 

  10. Privalov PL, Makhatadze GI (1993) Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol 232:660–679

    Article  CAS  Google Scholar 

  11. Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    Article  CAS  Google Scholar 

  12. Funahashi J, Takano K, Yamagata Y, Yutani K (2000) Role of surface hydrophobic residues in the conformational stability of human lysozyme at three different positions. Biochemistry 39:14448–14456

    Article  CAS  Google Scholar 

  13. Takano K, Yamagata Y, Yutani K (2001) Contribution of polar groups in the interior of a protein to the conformational stability. Biochemistry 40:4853–4858

    Article  CAS  Google Scholar 

  14. Kidokoro S, Wada A (1987) Determination of thermodynamic functions from scanning calorimetry data. Biopolymers 26:213–229

    Article  CAS  Google Scholar 

  15. Kidokoro S, Uedaira H, Wada A (1988) Determination of thermodynamic functions from scanning calorimetry data. II. For the system that includes self-dissociation/association process. Biopolymers 27:271–297

    Article  CAS  Google Scholar 

  16. Privalov PL, Makhatadze GI (1990) Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol 213:385–391

    Article  CAS  Google Scholar 

  17. Makhatadze GI, Privalov PL (1990) Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol 213:375–384

    Article  CAS  Google Scholar 

  18. Loladze VV, Ermolenko DN, Makhatadze GI (2001) Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci 10:1343–1352

    Article  CAS  Google Scholar 

  19. Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302:144–160

    Article  CAS  Google Scholar 

  20. Mitra L, Smolin N, Ravindra R, Royer C, Winter R (2006) Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation. Phys Chem Chem Phys 8:1249–1265

    Article  CAS  Google Scholar 

  21. Schweiker KL, Fitz W, Makhatadze GI (2009) Universal convergence of the specific volume changes of globular proteins upon unfolding. Biochemistry 48:10846–10851

    Article  CAS  Google Scholar 

  22. Nakamura S, Kidokoro S (2012) Volumetric properties of the molten globule state of cytochrome c in the thermal three-state transition evaluated by pressure perturbation calorimetry. J Phys Chem B 116:1927–1932

    Article  CAS  Google Scholar 

  23. Jamin M, Antalik M, Loh SN, Bolen DW, Baldwin RL (2000) The unfolding enthalpy of the pH 4 molten globule of apomyoglobin measured by isothermal titration calorimetry. Protein Sci 9:1340–1346

    Article  CAS  Google Scholar 

  24. Hamada D, Kidokoro S, Fukada H, Takahashi K, Goto Y (1994) Salt-induced formation of the molten globule state of cytochrome c studied by isothermal titration calorimetry. Proc Natl Acad Sci U S A 91:10325–10329

    Article  CAS  Google Scholar 

  25. Nakamura S, Kidokoro S (2004) Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability. Biophys Chem 109:229–249

    Article  CAS  Google Scholar 

  26. Nakamura S, Kidokoro S (2005) Direct observation of the enthalpy change accompanying the native to molten-globule transition of cytochrome c by using isothermal acid-titration calorimetry. Biophys Chem 113:161–168

    Article  CAS  Google Scholar 

  27. Nakamura S, Baba T, Kidokoro S (2007) A molten globule-like intermediate state detected in the thermal transition of cytochrome c under low salt concentration. Biophys Chem 127:103–112

    Article  CAS  Google Scholar 

  28. Nakamura S, Seki Y, Katoh E, Kidokoro S (2011) Thermodynamic and structural properties of the acid molten globule state of horse cytochrome c. Biochemistry 50:3116–3126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichi Kidokoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakamura, S., Kidokoro, Si. (2019). Protocols of IATC, DSC, and PPC: The Multistate Structural Transition of Cytochrome c. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics