Skip to main content

Tinkering with Binding Polynomials in Isothermal Titration Calorimetry

  • Protocol
  • First Online:
Book cover Microcalorimetry of Biological Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

Isothermal titration calorimetry (ITC) has become the preferred experimental technique for characterizing intermolecular interactions between biological molecules. Among the several advantages, the use of natural non-labeled molecules and the determination of the complete thermodynamic profile for the interaction in solution remain as the primary features that have promoted ITC to the forefront of experimental biophysics. The experimental design in ITC may range from studying a simple direct binary macromolecule-ligand interaction to studying the homotropic or heterotropic cooperative effect between ligands when interacting with a given macromolecule. The theory of the binding polynomial has proven to be an appropriate unifying framework for handling the complexities that can be encountered when studying macromolecule-ligand interactions, though it has been deemed troublesome. The goal of this chapter is to provide a quite simple and widely available set of training experiments aimed at mastering the formalism of the binding polynomial applied to isothermal titration calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freire E (2015) The binding thermodynamics of drug candidates. In: Keseru GM, Swinney DC (eds) Thermodynamics and kinetics of drug binding, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kawasaki Y, Freire E (2011) Finding a better path to drug selectivity. Drug Disc Today 16:985–990

    Article  CAS  Google Scholar 

  3. Schön A, Madani N, Smith AB, Lalonde JM, Freire E (2011) Some binding-related drug properties are dependent on thermodynamic signature. Chem Biol Drug Des 77:161–165

    Article  Google Scholar 

  4. Velazquez-Campoy A, Goñi G, Peregrina JR, Medina M (2006) Exact analysis of heterotropic interactions in proteins: Characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J 91:1887–1904

    Article  CAS  Google Scholar 

  5. Velazquez-Campoy A (2016) Allostery and cooperative interactions in proteins assessed by isothermal titration calorimetry. In: Bastos M (ed) Biocalorimetry: foundations and contemporary approaches. CRC Press, Boca Raton, pp 223–246

    Chapter  Google Scholar 

  6. Gill SJ (1989) Thermodynamics of ligand binding to proteins. Pure Appl Chem 61:1009–1020

    Article  CAS  Google Scholar 

  7. Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science Books, Mill Valley

    Google Scholar 

  8. Freire E, Schön A, Velazquez-Campoy A (2009) Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol 455:127–155

    Article  CAS  Google Scholar 

  9. Vega S, Abian O, Velazquez-Campoy A (2015) A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods 76:99–115

    Article  CAS  Google Scholar 

  10. Zhang YL, Zhang ZY (1998) Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Anal Biochem 261:139–148

    Article  CAS  Google Scholar 

  11. Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol 293:971–985

    Article  CAS  Google Scholar 

  12. Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277:260–266

    Article  CAS  Google Scholar 

  13. Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol Unit 17(8):1–24

    Google Scholar 

  14. Velazquez-Campoy A, Leavitt SA, Freire E (2015) Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 1278:183–204

    Article  CAS  Google Scholar 

  15. Griko YV (1999) Energetics of Ca(2+)-EDTA interactions: calorimetric study. Biophys Chem 79:117–127

    Article  CAS  Google Scholar 

  16. Arias-Moreno X, Cuesta-Lopez S, Millet O, Sancho J, Velazquez-Campoy A (2010) Thermodynamics of protein-cation interaction: Ca(+2) and Mg(+2) binding to the fifth binding module of the LDL receptor. Proteins 78:950–961

    Article  CAS  Google Scholar 

  17. Hinz HJ, Shiao DDF, Sturtevant JM (1971) Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry 10:1347–1352

    Article  CAS  Google Scholar 

  18. Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370

    Article  CAS  Google Scholar 

  19. Krainer G, Keller S (2015) Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76:116–123

    Article  CAS  Google Scholar 

  20. Houtman JC, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 16:30–42

    Article  CAS  Google Scholar 

  21. ITC data analysis in Origin (2004) Tutorial guide. Malvern-MicroCal

    Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministerio de Economia y Competitividad [BFU2013-47064-P and BFU2016-78232 to AVC]; Fondo de Investigaciones Sanitarias [PI15/00663 and PI18/00349 to OA]; Spanish Ministerio de Educacion, Cultura y Deporte [FPU13/3870 to RCG]; Miguel Servet Program from Instituto de Salud Carlos III [CPII13/0017 to OA]; Diputacion General de Aragon [B136/13 to RCG, Digestive Pathology Group B01 to OA and RCG, Protein Targets Group B89 to AVC]; Centro de Investigacion Biomedica en Red en Enfermedades Hepaticas y Digestivas (CIBERehd); and Asociacion Española de Gastroenterologia (AEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Velazquez-Campoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Claveria-Gimeno, R., Vega, S., Abian, O., Velazquez-Campoy, A. (2019). Tinkering with Binding Polynomials in Isothermal Titration Calorimetry. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics