Skip to main content

Molecular Dynamics Simulations of Conformational Conversions in Transformer Proteins

  • Protocol
  • First Online:
Protein Supersecondary Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1958))

  • 1283 Accesses

Abstract

A relatively recently discovered class of proteins known as transformer proteins undergo large-scale conformational conversions that change their supersecondary structure. These structural transformations lead to different configurations that perform different functions. We describe computational methods using molecular dynamics simulations that allow the determination of the specific amino acids that facilitate the conformational transformations. These investigations provide guidance on the location and type of amino acid mutations that can either enhance or inhibit the structural transitions that allow transformer proteins to perform multiple functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knauer SH, Artsimovitch I, Rösch P (2012) Transformer proteins. Cell Cycle 11:4289–4290

    Article  CAS  Google Scholar 

  2. GC JB, Bhandari YR, Gerstman BS, Chapagain PP (2014) Molecular dynamics investigations of the α-helix to β-barrel conformational transformation in the RfaH transcription factor. J Phys Chem B 118:5101–5108

    Article  CAS  Google Scholar 

  3. Zhou M, Ottenberg G, Sferrazza GF, Lasmezas CI (2012) Highly neurotoxic monomeric alpha-helical prion protein. Proc Natl Acad Sci U S A 109:3113–3118

    Article  CAS  Google Scholar 

  4. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  CAS  Google Scholar 

  5. Straub JE, Thirumalai D (2011) Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annu Rev Phys Chem 62:437–463

    Article  CAS  Google Scholar 

  6. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307

    Article  CAS  Google Scholar 

  7. DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A 101:2293–2298

    Article  CAS  Google Scholar 

  8. Diaz-Espinoza R, Soto C (2012) High-resolution structure of infectious prion protein: the final frontier. Nat Struct Mol Biol 19:370–377

    Article  CAS  Google Scholar 

  9. Huang L, Jin R, Li J, Luo K, Huang T, Wu D, Wang W, Chen R, Xiao G (2010) Macromolecular crowding converts the human recombinant PrPC to the soluble neurotoxic β-oligomers. FASEB J 24:3536–3543

    Article  CAS  Google Scholar 

  10. Sang JC, Lee CY, Luh FY, Huang YW, Chiang YW, Chen RP (2012) Slow spontaneous alpha-to-beta structural conversion in a non-denaturing neutral condition reveals the intrinsically disordered property of the disulfide-reduced recombinant mouse prion protein. Prion 6:489–497

    Article  CAS  Google Scholar 

  11. Khandogin J, Brooks CL 3rd (2007) Linking folding with aggregation in Alzheimer’s beta-amyloid peptides. Proc Natl Acad Sci U S A 104:16880–16885

    Article  CAS  Google Scholar 

  12. Steckmann T, Awan Z, Gerstman BS, Chapagain PP (2012) Kinetics of peptide secondary structure conversion during amyloid beta-protein fibrillogenesis. J Theor Biol 301:95–102

    Article  CAS  Google Scholar 

  13. Kammerer RA, Kostrewa D, Zurdo J, Detken A, Garcia-Echeverria C, Green JD, Muller SA, Meier BH, Winkler FK, Dobson CM et al (2004) Exploring amyloid formation by a de novo design. Proc Natl Acad Sci U S A 101:4435–4440

    Article  CAS  Google Scholar 

  14. Steinmetz MO, Gattin Z, Verel R, Ciani B, Stromer T, Green JM, Tittmann P, Schulze-Briese C, Gross H, van Gunsteren WF et al (2008) Atomic models of de novo designed cc beta-Met amyloid-like fibrils. J Mol Biol 376:898–912

    Article  CAS  Google Scholar 

  15. Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567

    Article  CAS  Google Scholar 

  16. Ding F, Borreguero JM, Buldyrey SV, Stanley HE, Dokholyan NV (2003) mechanism for the alpha-helix to beta-hairpin transition. Proteins 53:220–228

    Article  CAS  Google Scholar 

  17. Hansen MB, Ruizendaal L, Löwik DWPM, van Hest JCM (2009) Switchable peptides. Drug Discov Today Technol 6:e33–e39

    Article  CAS  Google Scholar 

  18. Qin Z, Buehler MJ (2010) Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys Rev Lett 104:198304

    Article  Google Scholar 

  19. Wang X, Bergenfeld I, Arora PS, Canary JW (2012) Reversible redox reconfiguration of secondary structures in a designed peptide. Angew Chem Int Ed Eng 51:2099–13101

    Google Scholar 

  20. Yoon S, Welsh WJ (2005) Rapid assessment of contact-dependent secondary structure propensity: relevance to amyloidogenic sequences. Proteins 60:110–117

    Article  CAS  Google Scholar 

  21. Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P (2012) An alpha helix to beta-barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303

    Article  CAS  Google Scholar 

  22. GC JB, Gerstman BS, Chapagain PP (2015) The role of the interdomain interactions on RfaH dynamics and conformational transformation. J Phys Chem B 119(40):12750–12759

    Article  CAS  Google Scholar 

  23. Svetlov V, Nudler E (2012) Unfolding the bridge between transcription and translation. Cell 150:243–245

    Article  CAS  Google Scholar 

  24. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5:Unit 5.6

    Google Scholar 

  25. Sanchez R, Sali A (2000) Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 143:97–129

    CAS  PubMed  Google Scholar 

  26. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  27. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao F, Caflisch A (2003) Replica exchange molecular dynamics simulations of reversible folding. J Chem Phys 119(7):4035–4042

    Article  CAS  Google Scholar 

  29. Zhang W, Wu C, Duan Y (2005) Convergence of replica exchange molecular dynamics. J Chem Phys 123(15):154105

    Article  Google Scholar 

  30. Martin HS, Jha S, Coveney PV (2014) Comparative analysis of nucleotide translocation through protein nanopores using steered molecular dynamics and an adaptive biasing force. J Comput Chem 35:692–702

    Article  CAS  Google Scholar 

  31. Steckmann T, Bhandari YR, Chapagain PP, Gerstman BS (2017) Cooperative structural transitions in amyloid-like aggregation. J Chem Phys 146:135103

    Article  Google Scholar 

  32. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  CAS  Google Scholar 

  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard S. Gerstman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerstman, B.S., Chapagain, P.P., GC, J., Steckmann, T. (2019). Molecular Dynamics Simulations of Conformational Conversions in Transformer Proteins. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics