Skip to main content

Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1958))

Abstract

Proteins with prion-like behavior are attracting an increasing interest, since accumulating evidences indicate that they play relevant roles both in health and disease. The self-assembly of these proteins into insoluble aggregates is associated with severe neuropathological processes such as amyotrophic lateral sclerosis (ALS). However, in normal conditions, they are known to accomplish a wide range of functional roles. The conformational duality of prion-like proteins is often encoded in specific protein regions, named prion-like domains (PrLDs). PrLDs are usually long and disordered regions of low complexity. We have shown that PrLDs might contain soft-amyloid cores that contribute significantly to trigger their aggregation, as well as to support their propagation. Further exploration of the role of these sequences in the conformational conversion of prion-like proteins might provide novel insights into the mechanism of action and regulation of these polypeptides, enabling the future development of therapeutic strategies. Here, we describe a set of methodologies aimed to identify and characterize these short amyloid stretches in a protein or proteome of interest, ranging from in silico detection to in vitro and in vivo evaluation and validation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    Article  CAS  Google Scholar 

  2. Sipe JD, Benson MD, Buxbaum JN et al (2016) Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 23:209–213

    Article  CAS  Google Scholar 

  3. Ventura S, Zurdo J, Narayanan S et al (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 101:7258–7263

    Article  CAS  Google Scholar 

  4. Sikorska B, Liberski PP (2012) Human prion diseases: from Kuru to variant Creutzfeldt-Jakob disease. Subcell Biochem 65:457–496

    Article  CAS  Google Scholar 

  5. Halfmann R, Jarosz DF, Jones SK et al (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    Article  CAS  Google Scholar 

  6. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483

    Article  CAS  Google Scholar 

  7. Si K (2015) Prions: what are they good for? Annu Rev Cell Dev Biol 31:149–169

    Article  CAS  Google Scholar 

  8. Espinosa Angarica V, Ventura S, Sancho J (2013) Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14:316

    Article  Google Scholar 

  9. Batlle C, de Groot NS, Iglesias V et al (2017) Characterization of soft amyloid cores in human prion-like proteins. Sci Rep 7:12134

    Article  Google Scholar 

  10. Sant’Anna R, Fernandez MR, Batlle C et al (2016) Characterization of amyloid cores in prion domains. Sci Rep 6:34274

    Article  Google Scholar 

  11. Valtierra S, Du Z, Li L (2017) Analysis of small critical regions of Swi1 conferring prion formation, maintenance, and transmission. Mol Cell Biol 37:e00206-17

    Article  Google Scholar 

  12. Pallares I, Iglesias V, Ventura S (2015) The Rho termination factor of Clostridium botulinum contains a prion-like domain with a highly amyloidogenic core. Front Microbiol 6:1516

    PubMed  Google Scholar 

  13. Yuan AH, Hochschild A (2017) A bacterial global regulator forms a prion. Science 355:198–201

    Article  CAS  Google Scholar 

  14. Marchante R, Rowe M, Zenthon J et al (2013) Structural definition is important for the propagation of the yeast [PSI+] prion. Mol Cell 50:675–685

    Article  CAS  Google Scholar 

  15. Malinovska L, Palm S, Gibson K et al (2015) Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc Natl Acad Sci U S A 112:E2620–E2629

    Article  CAS  Google Scholar 

  16. Chakrabortee S, Kayatekin C, Newby GA et al (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci U S A 113:6065–6070

    Article  CAS  Google Scholar 

  17. Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci U S A 97:11910–11915

    Article  CAS  Google Scholar 

  18. Toombs JA, Petri M, Paul KR et al (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci U S A 109:6519–6524

    Article  CAS  Google Scholar 

  19. Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  Google Scholar 

  20. Lancaster AK, Nutter-Upham A, Lindquist S et al (2014) PLAAC: a web and command-line application to identify proteins with Prion-Like Amino Acid Composition. Bioinformatics (Oxford, England) 30:2–3

    Article  Google Scholar 

  21. Alberti S, Halfmann R, King O et al (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  CAS  Google Scholar 

  22. Sabate R, Rousseau F, Schymkowitz J et al (2015) What makes a protein sequence a prion? PLoS Comput Biol 11:e1004013

    Article  Google Scholar 

  23. Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242

    Article  CAS  Google Scholar 

  24. Zambrano R, Conchillo-Sole O, Iglesias V et al (2015) PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res 43:1–7

    Article  Google Scholar 

  25. Zhao R, So M, Maat H et al (2016) Measurement of amyloid formation by turbidity assay-seeing through the cloud. Biophys Rev 8:445–471

    Article  CAS  Google Scholar 

  26. Sant’Anna R, Gallego P, Robinson LZ et al (2016) Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nat Commun 7:10787

    Article  Google Scholar 

  27. Hammarstrom P, Jiang X, Hurshman AR et al (2002) Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A 99(Suppl 4):16427–16432

    Article  CAS  Google Scholar 

  28. Rosen CG, Weber G (1969) Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8:3915–3920

    Article  CAS  Google Scholar 

  29. Stryer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol 13:482–495

    Article  CAS  Google Scholar 

  30. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    Article  CAS  Google Scholar 

  31. Steensma DP (2001) “Congo” red: out of Africa? Arch Pathol Lab Med 125:250–252

    CAS  PubMed  Google Scholar 

  32. Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37:1273–1281

    Article  CAS  Google Scholar 

  33. Sabate R, Estelrich J (2003) Pinacyanol as effective probe of fibrillar beta-amyloid peptide: comparative study with Congo Red. Biopolymers 72:455–463

    Article  CAS  Google Scholar 

  34. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal Biochem 266:66–76

    Article  CAS  Google Scholar 

  35. Sabate R, Espargaro A, Saupe SJ et al (2009) Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microb Cell Factories 8:56

    Article  Google Scholar 

  36. de Groot NS, Parella T, Aviles FX et al (2007) Ile-phe dipeptide self-assembly: clues to amyloid formation. Biophys J 92:1732–1741

    Article  Google Scholar 

  37. Vassar PS, Culling CF (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch Pathol 68:487–498

    CAS  PubMed  Google Scholar 

  38. Hobbs JR, Morgan AD (1963) Fluorescence microscopy with Thioflavine-T in the diagnosis of amyloid. J Pathol Bacteriol 86:437–442

    Article  CAS  Google Scholar 

  39. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  CAS  Google Scholar 

  40. Sant’Anna R, Fernández MR, Batlle C et al (2016) Characterization of amyloid cores in prion domains. Sci Rep 6:34274

    Article  Google Scholar 

  41. Urbanc B, Cruz L, Le R et al (2002) Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer’s disease. Proc Natl Acad Sci U S A 99:13990–13995

    Article  CAS  Google Scholar 

  42. Espargaro A, Sabate R, Ventura S (2012) Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol BioSyst 8:2839–2844

    Article  CAS  Google Scholar 

  43. Marinelli P, Pallares I, Navarro S et al (2016) Dissecting the contribution of Staphylococcus aureus alpha-phenol-soluble modulins to biofilm amyloid structure. Sci Rep 6:34552

    Article  CAS  Google Scholar 

  44. Dasari M, Espargaro A, Sabate R et al (2011) Bacterial inclusion bodies of Alzheimer’s disease beta-amyloid peptides can be employed to study native-like aggregation intermediate states. Chembiochem 12:407–423

    Article  CAS  Google Scholar 

  45. Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25

    Article  Google Scholar 

  46. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  47. Sarroukh R, Goormaghtigh E, Ruysschaert JM et al (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta 1828:2328–2338

    Article  CAS  Google Scholar 

  48. Sabate R, Espargaro A, de Groot NS et al (2010) The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils. J Mol Biol 404:337–352

    Article  CAS  Google Scholar 

  49. Collins SR, Douglass A, Vale RD et al (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2:e321

    Article  Google Scholar 

  50. Pujols J, Pena-Diaz S, Conde-Gimenez M et al (2017) High-throughput screening methodology to identify alpha-synuclein aggregation inhibitors. Int J Mol Sci 18:E478

    Article  Google Scholar 

  51. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  Google Scholar 

  52. Sabate R, Gallardo M, Estelrich J (2003) An autocatalytic reaction as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers 71:190–195

    Article  CAS  Google Scholar 

  53. Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794:375–397

    Article  CAS  Google Scholar 

  54. Cox BS (1965) Ψ, A cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505

    Article  Google Scholar 

  55. Parham SN, Resende CG, Tuite MF (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20:2111–2119

    Article  CAS  Google Scholar 

  56. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  57. Tanaka M, Collins SR, Toyama BH et al (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–589

    Article  CAS  Google Scholar 

  58. Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR et al (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683–692

    Article  CAS  Google Scholar 

  59. Dosztanyi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  CAS  Google Scholar 

  60. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Economy and Competitiveness BIO2016-783-78310-R to S.V. and by ICREA, ICREA-Academia 2015 to S.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández, M.R., Pallarès, I., Iglesias, V., Santos, J., Ventura, S. (2019). Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics