Skip to main content

Computational Prediction of sRNA in Acinetobacter baumannii

  • Protocol
  • First Online:
Acinetobacter baumannii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1946))

Abstract

Small RNAs in bacteria are noncoding RNAs that act as posttranscriptional regulators of gene expression. Over time, they have gained importance as fine-tuners of expression of genes involved in critical biological processes like metabolism, fitness, virulence, and antibiotic resistance. The availability of various high-throughput strategies enable the detection of these molecules but are technically challenging and time-intensive. Thus, to fulfil the need of a simple computational algorithm pipeline to predict these sRNAs in bacterial species, we detail a user-friendly ensemble method with specific application in Acinetobacter spp. The developed algorithms primarily look for intergenic regions in the genome of related Acinetobacter spp., thermodynamic stability, and conservation of RNA secondary structures to generate a model input for the sRNAPredict3 tool which utilizes all this information to generate a list of putative sRNA. We confirmed the accuracy of the method by comparing its output with the RNA-seq data and found the method to be faster and more accurate for Acinetobacter baumannii ATCC 17978. Thus, this method improves the identification of sRNA in Acinetobacter and other bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039. https://doi.org/10.3390/ijms140816010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649. https://doi.org/10.1101/gad.1837609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, Zhai Q (2013) Profiling and identification of small rDNA-derived RNAs and their potential biological functions. PLoS One 8(2):e56842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barman RK, Mukhopadhyay A, Das S (2017) An improved method for identification of small non-coding RNAs in bacteria using support vector machine. Sci Rep 7:46070. https://doi.org/10.1038/srep46070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mercer TR, Dinger ME, Mattick JS (2009) Long noncoding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  7. Gómez-Lozano M, Marvig RL, Molin S, Long KS (2014) Identification of bacterial small RNAs by RNA sequencing. In: Filloux A, Ramos JL (eds) Pseudomonas methods and protocols. Methods in molecular biology (methods and protocols), vol 1149. Humana Press, New York, NY

    Google Scholar 

  8. Sharma R, Arya S, Patil SD, Sharma A, Jain PK, Navani NK, Pathania R (2014) Identification of novel regulatory small RNAs in Acinetobacter baumannii. PLoS One 9(4):e93833

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R (2016) Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter—AbaF. J Antimicrob Chemother 72(1):68–74

    Article  PubMed  Google Scholar 

  10. Livny J, Brencic A, Lory S, Waldor MK (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34(12):3484–3493. https://doi.org/10.1093/nar/gkl453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kingsford CL, Ayanbule K, Salzberg SL (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8(2):R22. https://doi.org/10.1186/gb-2007-8-2-r22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2:8. https://doi.org/10.1186/1471-2105-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Livny J, Fogel MA, Davis BM, Waldor MK (2005) sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes. Nucleic Acids Res 33(13):4096–4105. https://doi.org/10.1093/nar/gki715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenkranz D, Zischler H (2012) proTRAC—a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinformatics 13:5. https://doi.org/10.1186/1471-2105-13-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Livny J (2012) Bioinformatic discovery of bacterial regulatory RNAs using SIPHT. In: Keiler K (ed) Bacterial regulatory RNA. Methods in molecular biology (methods and protocols), vol 905. Humana Press, Totowa, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Pathania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arya, S., Dubey, V., Sen, D., Sharma, A., Pathania, R. (2019). Computational Prediction of sRNA in Acinetobacter baumannii. In: Biswas, I., Rather, P. (eds) Acinetobacter baumannii. Methods in Molecular Biology, vol 1946. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9118-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9118-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9117-4

  • Online ISBN: 978-1-4939-9118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics