Skip to main content

Multi-Level Modeling and Simulation of Cellular Systems: An Introduction to ML-Rules

  • Protocol
  • First Online:
  • 585 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1945))

Abstract

ML-Rules is a rule-based language for multi-level modeling and simulation. ML-Rules supports dynamic nesting of entities and applying arbitrary functions on entity attributes and content, as well as for defining kinetics of reactions. This allows describing and simulating complex cellular dynamics operating at different organizational levels, e.g., to combine intra-, inter-, and cellular dynamics, like the proliferation of cells, or to include compartmental dynamics like merging and splitting of mitochondria or endocytosis. The expressiveness of the language is bought with additional efforts in executing ML-Rules models. Therefore, various simulators have been developed from which the user and automatic procedures can select. The experiment specification language SESSL facilitates design, execution, and reuse of simulation experiments. The chapter illuminates the specific features of ML-Rules as a rule-based modeling language, the implications for an efficient execution, and shows ML-Rules at work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Other rule-based languages, e.g., ML-Space [14], opted for accessing attributes by names.

References

  1. Sargent RG (2013) Verification and validation of simulation models. J Simul 7:12–24

    Article  Google Scholar 

  2. Maus C (2013) Toward accessible multilevel modeling in systems biology: a rule-based language concept. PhD thesis, University of Rostock

    Google Scholar 

  3. Maus C, Rybacki S, Uhrmacher AM (2011) Rule-based multi-level modeling of cell biological systems. BMC Syst Biol 5:166

    Article  Google Scholar 

  4. Warnke T, Helms T, Uhrmacher AM (2015) Syntax and semantics of a multi-level modeling language. In: Proceedings of the 3rd ACM SIGSIM conference on principles of advanced discrete simulation (PADS), pp 133–144

    Google Scholar 

  5. Wiegert RG (1988) Holism and reductionism in ecology: hypotheses, scale and systems models. Oikos 53:267–269

    Article  Google Scholar 

  6. Noble D (2008) The music of life: biology beyond genes. Oxford University Press, Oxford

    Google Scholar 

  7. Campbell DT (1974) ‘Downward causation’ in hierarchically organised biological systems. In: Ayala FJ, Dobzhansky T (eds) Studies in the philosophy of biology: reduction and related problems. Palgrave, London

    Google Scholar 

  8. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20:3289–3291

    Article  CAS  Google Scholar 

  9. Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110

    Article  Google Scholar 

  10. Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM (2015) Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 11:e1004106

    Article  Google Scholar 

  11. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  12. Oury N, Plotkin GD (2013) Multi-level modelling via stochastic multi-level multiset rewriting. Math Structures Comput Sci 23:471–503

    Article  Google Scholar 

  13. John M, Lhoussaine C, Niehren J, Versari C (2011) Biochemical reaction rules with constraints. Lect Notes Comput Sci 6602:338–357

    Article  Google Scholar 

  14. Bittig A, Uhrmacher AM (2017) ML-Space: hybrid spatial Gillespie and particle simulation of multi-level rule-based models in cell biology. IEEE/ACM Trans Comput Biol Bioinform 14:1339–1349

    Article  CAS  Google Scholar 

  15. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005) Rule-based modeling of biochemical networks. Complexity 10:22–41

    Article  Google Scholar 

  16. Jones SP (ed) (2003) Haskell 98 language and libraries: the revised report. Cambridge University Press, Cambridge

    Google Scholar 

  17. Priami C (1995) Stochastic π-calculus. Comput J 38:578–589

    Article  Google Scholar 

  18. Mazemondet O, John M, Leye S, Rolfs A, Uhrmacher AM (2012) Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS ONE 7:e42792

    Article  Google Scholar 

  19. Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci USA 88:7328–7332

    Article  CAS  Google Scholar 

  20. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Chem Phys 104:1876–1889

    Article  CAS  Google Scholar 

  21. Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling networks. Lect Notes Comput Sci 4807:139–157

    Article  Google Scholar 

  22. Sneddon MW, Faeder JR, Emonet T (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods 8:177–183

    Article  CAS  Google Scholar 

  23. Forgy CL (1982) Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif Intell 19:17–37

    Article  Google Scholar 

  24. Krivine J, Milner R, Troina A (2008) Stochastic bigraphs. Electron Notes Theor Comput Sci 218:73–96

    Article  Google Scholar 

  25. Helms T, Luboschik M, Schumann H, Uhrmacher AM (2013) An approximate execution of rule-based multi-level models. Lect Notes Comput Sci 8130:19–32

    Article  Google Scholar 

  26. Cao Y, Gillespie DT, Petzold LR (2005) The slow-scale stochastic simulation algorithm. J Chem Phys 122:14116

    Article  Google Scholar 

  27. Weinan E, Liu D, Vanden-Eijnden E (2005) Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J Chem Phys 123:194107

    Article  Google Scholar 

  28. Helms T, Wilsdorf P, Uhrmacher AM (2018) Hybrid simulation of dynamic reaction networks in multi-level models. In: SIGSIM-PADS ’18: proceedings of the 2018 ACM SIGSIM conference on principles of advanced discrete simulation. ACM Press, New York, pp 133–144

    Chapter  Google Scholar 

  29. Helms T, Warnke T, Maus C, Uhrmacher AM (2017) Semantics and efficient simulation algorithms of an expressive multilevel modeling language. ACM Trans Model Comput Simul 27:8

    Article  Google Scholar 

  30. Hogg JS, Harris LA, Stover LJ, Nair NS, Faeder JR (2014) Exact hybrid particle/population simulation of rule-based models of biochemical systems. PLoS Comput Biol 10:e1003544

    Article  Google Scholar 

  31. Helms T, Ewald R, Rybacki S, Uhrmacher AM (2015) Automatic runtime adaptation for component-based simulation algorithms. ACM Trans Model Comput Simul 26:7

    Article  Google Scholar 

  32. Leye S, Himmelspach J, Uhrmacher AM (2009) A discussion on experimental model validation. In: Al-Dabass D, Orsoni A, Brentnall A, Abraham A, Zobel R (eds) UKSim 2009: eleventh international conference on computer modelling and simulation. IEEE, Los Alamitos, pp 161–167

    Google Scholar 

  33. Ewald R, Uhrmacher AM (2014) SESSL: a domain-specific language for simulation experiments. ACM Trans Model Comput Simul 24:11

    Article  Google Scholar 

  34. Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J—a modular framework for meta-heuristic optimization. In: Krasnogor N (ed) GECCO ’11: Proceedings of the 13th annual conference on genetic and evolutionary algorithms. ACM Press, New York, pp 1723–1730

    Google Scholar 

  35. Clarke EM, Faeder JR, Langmead CJ, Harris LA, Jha SK, Legay A (2008) Statistical model checking in BioLab: applications to the automated analysis of T-cell receptor signaling pathway. Lect Notes Comput Sci 5307:231–250

    Article  CAS  Google Scholar 

  36. Peng D, Warnke T, Haack F, Uhrmacher AM (2016) Reusing simulation experiment specifications to support developing models by successive extension. Simul Model Pract Theory 68:33–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelinde M. Uhrmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Helms, T., Warnke, T., Uhrmacher, A.M. (2019). Multi-Level Modeling and Simulation of Cellular Systems: An Introduction to ML-Rules. In: Hlavacek, W. (eds) Modeling Biomolecular Site Dynamics. Methods in Molecular Biology, vol 1945. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9102-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9102-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9100-6

  • Online ISBN: 978-1-4939-9102-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics