Skip to main content

Role of Astrocytes in the Neurogenic Niches

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1938))

Abstract

In the mammalian brain, highly specialized astrocytes serve as neural stem cells (NSCs) that divide and give rise to new neurons, in a process called neurogenesis. During embryonic development NSCs generate almost all neurons of the brain. Soon after birth the neurogenic potential of NSCs is highly reduced, and neurogenesis occurs only in two specialized brain regions called the neurogenic niches. Niche cells are essential to stem cells as they provide structural and nutritional support, and control fundamental stem cell decisions. Astrocytes, major components of the adult neurogenic niches, are evolving as important regulators of neurogenesis, by controlling NSC proliferation, fate choice, and differentiation of the progeny. Therefore, astrocytes contribute to neurogenesis in two ways: as NSCs and as niche cells. This review highlights the role of astrocyte-like NSCs during development and adulthood, and summarizes how niche astrocytes control the process of adult neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  CAS  PubMed  Google Scholar 

  2. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Med 5(7):a018812

    Article  CAS  Google Scholar 

  5. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisen J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23(1):25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falk S, Gotz M (2017) Glial control of neurogenesis. Curr Opin Neurobiol 47:188–195

    Article  CAS  PubMed  Google Scholar 

  7. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41(6):881–890

    Article  CAS  PubMed  Google Scholar 

  8. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci Off J Soc Neurosci 22(8):3161–3173

    Article  CAS  Google Scholar 

  10. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788

    Article  PubMed  CAS  Google Scholar 

  11. Campbell K (2003) Signaling to and from radial glia. Glia 43(1):44–46

    Article  PubMed  Google Scholar 

  12. Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26(9):469–476

    Article  CAS  PubMed  Google Scholar 

  13. Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci Off J Soc Neurosci 25(30):6997–7003

    Article  CAS  Google Scholar 

  14. Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2015) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7(1):a020362

    Article  PubMed Central  CAS  Google Scholar 

  15. Taverna E, Gotz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30:465–502

    Article  CAS  PubMed  Google Scholar 

  16. Grove EA, Williams BP, Li DQ, Hajihosseini M, Friedrich A, Price J (1993) Multiple restricted lineages in the embryonic rat cerebral cortex. Development 117(2):553–561

    CAS  PubMed  Google Scholar 

  17. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Gotz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37(5):751–764

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy M, Turnbull DH, Walsh CA, Fishell G (2001) Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci Off J Soc Neurosci 21(17):6772–6781

    Article  CAS  Google Scholar 

  19. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917):1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magavi SS, Mitchell BD, Szentirmai O, Carter BS, Macklis JD (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci Off J Soc Neurosci 25(46):10729–10739

    Article  CAS  Google Scholar 

  21. Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241(4871):1342–1345

    Article  CAS  PubMed  Google Scholar 

  22. Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, Kirchhoff F, Hirrlinger J, Haslinger A, Lie DC, Beckers J, Yoder B, Irmler M, Gotz M (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7(6):744–758

    Article  CAS  PubMed  Google Scholar 

  23. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gotz M, Sirko S, Beckers J, Irmler M (2015) Reactive astrocytes as neural stem or progenitor cells: in vivo lineage, in vitro potential, and genome-wide expression analysis. Glia 63(8):1452–1468

    Article  PubMed  PubMed Central  Google Scholar 

  25. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340

    Article  CAS  PubMed  Google Scholar 

  26. Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, Enikolopov G, Nauen DW, Christian KM, Ming GL, Song H (2015) Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17(3):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18(4):490–492

    Article  CAS  PubMed  Google Scholar 

  29. Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8(5):566–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pilz GA, Bottes S, Betizeau M, Jorg DJ, Carta S, Simons BD, Helmchen F, Jessberger S (2018) Live imaging of neurogenesis in the adult mouse hippocampus. Science 359(6376):658–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Falk S, Bugeon S, Ninkovic J, Pilz GA, Postiglione MP, Cremer H, Knoblich JA, Gotz M (2017) Time-specific effects of spindle positioning on embryonic progenitor pool composition and adult neural stem cell seeding. Neuron 93(4):777–791.e773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18(5):657–665

    Article  CAS  PubMed  Google Scholar 

  35. Gotz M, Nakafuku M, Petrik D (2016) Neurogenesis in the developing and adult brain-similarities and key differences. Cold Spring Harb Perspect Biol 8(7)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lim DA, Alvarez-Buylla A (2016) The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol 8(5)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Gotz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 67(1-2):147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872

    Article  CAS  PubMed  Google Scholar 

  40. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci Off J Soc Neurosci 26(30):7907–7918

    Article  CAS  Google Scholar 

  41. Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, Mills Ko E, Zarbalis K, Deng W, Pleasure D (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci Off J Soc Neurosci 35(9):3756–3763

    Article  CAS  Google Scholar 

  42. Ortega F, Gascon S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Chichung Lie D, Schroeder T, Berninger B (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15(6):602–613

    Article  CAS  PubMed  Google Scholar 

  43. Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2(+) neural stem cells in the adult hippocampus. Cell Stem Cell 1(5):515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jessberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11(8):888–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T, Jessberger S, Taylor V (2016) Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell 19(5):653–662

    Article  CAS  PubMed  Google Scholar 

  46. Suhonen JO, Peterson DA, Ray J, Gage FH (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383(6601):624–627

    Article  CAS  PubMed  Google Scholar 

  47. Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32(1-2):187–198

    Article  CAS  PubMed  Google Scholar 

  48. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci Off J Soc Neurosci 20(23):8727–8735

    Article  CAS  Google Scholar 

  49. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149

    Article  PubMed  Google Scholar 

  50. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89(5):1092–1100

    Article  CAS  PubMed  Google Scholar 

  51. Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 96(13):7526–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakayama T, Momoki-Soga T, Inoue N (2003) Astrocyte-derived factors instruct differentiation of embryonic stem cells into neurons. Neurosci Res 46(2):241–249

    Article  CAS  PubMed  Google Scholar 

  53. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44

    Article  CAS  PubMed  Google Scholar 

  54. Ueki T, Tanaka M, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Miura N, Sugimura H, Sato K (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci Off J Soc Neurosci 23(37):11732–11740

    Article  CAS  Google Scholar 

  55. Grill RJ, Pixley SK (1997) In vitro generation of adult rat olfactory sensory neurons and regulation of maturation by coculture with CNS tissues. J Neurosci Off J Soc Neurosci 17(9):3120–3127

    Article  CAS  Google Scholar 

  56. Pixley SK (1992) CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells. Neuron 8(6):1191–1204

    Article  CAS  PubMed  Google Scholar 

  57. Temple S, Davis AA (1994) Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors. Development 120(4):999–1008

    CAS  PubMed  Google Scholar 

  58. Ehret F, Vogler S, Kempermann G (2015) A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Res 15(3):514–521

    Article  CAS  PubMed  Google Scholar 

  59. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375

    Article  CAS  PubMed  Google Scholar 

  60. Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25(10):2619–2627

    Article  CAS  PubMed  Google Scholar 

  61. Wilhelmsson U, Faiz M, de Pablo Y, Sjoqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M, Smith PL, Shinjyo N, Pekny T, Zorec R, Stahlberg A, Pekna M, Sahlgren C, Pekny M (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated notch pathway. Stem Cells 30(10):2320–2329

    Article  CAS  PubMed  Google Scholar 

  62. Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59(11):1567–1578

    Article  PubMed  Google Scholar 

  63. Nestor MW, Mok LP, Tulapurkar ME, Thompson SM (2007) Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J Neurosci 27(47):12817–12828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhuang Z, Huang J, Cepero ML, Liebl DJ (2011) Eph signaling regulates gliotransmitter release. Commun Integr Biol 4(2):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 106(30):12524–12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K, Rose CR, Pasquale EB, Klein R (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12(10):1285–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisen J (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19(4):462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiao JW, Feldheim DA, Chen DF (2008) Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci U S A 105(25):8778–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dowell JA, Johnson JA, Li L (2009) Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res 8(8):4135–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keene SD, Greco TM, Parastatidis I, Lee SH, Hughes EG, Balice-Gordon RJ, Speicher DW, Ischiropoulos H (2009) Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics 9(3):768–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389

    Article  PubMed  Google Scholar 

  72. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, Lopatar J, Pfrieger FW, Bezzi P, Bischofberger J, Toni N (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972

    Article  CAS  PubMed  Google Scholar 

  73. Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65(6):859–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barkho B, Song H-J, Aimone B, Kuwabara T, Nakashima K, Gage FH, Zhao X-Y (2006) Identification of astrocytes-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15(3):407–421

    Article  CAS  PubMed  Google Scholar 

  75. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    Article  CAS  PubMed  Google Scholar 

  76. Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci Off J Soc Neurosci 22(2):486–492

    Article  CAS  Google Scholar 

  77. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    Article  CAS  PubMed  Google Scholar 

  78. Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider WJ, Nimpf J (2008) Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27(22):3069–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu Z, Kipnis J (2010) Thrombospondin 1--a key astrocyte-derived neurogenic factor. FASEB J 24(6):1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cvijetic S, Bortolotto V, Manfredi M, Ranzato E, Marengo E, Salem R, Canonico PL, Grilli M (2017) Cell autonomous and noncell-autonomous role of NF-kappaB p50 in astrocyte-mediated fate specification of adult neural progenitor cells. Glia 65(1):169–181

    Article  PubMed  Google Scholar 

  81. Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva S, Grilli M (2013) High-mobility group box-1 protein and beta-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-kappaB axis: relevance for Alzheimer’s disease. J Neurosci Off J Soc Neurosci 33(14):6047–6059

    Article  CAS  Google Scholar 

  82. Valente MM, Allen M, Bortolotto V, Lim ST, Conant K, Grilli M (2015) The MMP-1/PAR-1 axis enhances proliferation and neuronal differentiation of adult hippocampal neural progenitor cells. Neural Plast 2015:10

    Article  CAS  Google Scholar 

  83. Beckervordersandforth R, Deshpande A, Schaffner I, Huttner HB, Lepier A, Lie DC, Gotz M (2014) In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Reports 2(2):153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Silvia Cappello, Max Planck Institute for Psychiatry, Munich, for carefully revising the manuscript. This work is funded by the Deutsche Forschungsgemeinschaft (DFG; BE 5136/2-1 and BE5136/1-2) and the DFG research training group 2162 “Neurodevelopment and Vulnerability of the Central Nervous System” (DFG GRK2162/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Beckervordersandforth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneider, J., Karpf, J., Beckervordersandforth, R. (2019). Role of Astrocytes in the Neurogenic Niches. In: Di Benedetto, B. (eds) Astrocytes. Methods in Molecular Biology, vol 1938. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9068-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9068-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9067-2

  • Online ISBN: 978-1-4939-9068-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics