Skip to main content
Book cover

Astrocytes pp 219–229Cite as

Native Chromatin Immunoprecipitation (N-ChIP) in Primary Cortical Rat Astrocytes

  • Protocol
  • First Online:
  • 2446 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1938))

Abstract

Chromatin immunoprecipitation (ChIP) in conjunction with qPCR or next generation sequencing (ChIP-seq) is used to detect protein–DNA interaction. Typically, DNA bound to a protein of interest is captured with an antibody against this protein, and DNA is then purified from DNA–protein complexes. Here, we describe a native Chromatin immunoprecipitation (N-ChIP) approach which is an efficient ChIP method with high resolution for histone modifications and a number of transcription factors. This protocol has been tailored for cultured primary rat astrocytes, and we included the preparation of astrocytic cell cultures in this protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci U S A 107(19):8824–8829

    Article  CAS  Google Scholar 

  2. Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC, Schuetz AL, Burkhardt S, Benito E, Navarro Sala M, Javan SB, Haass C, Schmid B, Fischer A, Bonn S (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19(1):102–110

    Article  CAS  Google Scholar 

  3. Jakovcevski M, Akbarian S, Di Benedetto B (2016) Pharmacological modulation of astrocytes and the role of cell type-specific histone modifications for the treatment of mood disorders. Curr Opin Pharmacol 26:61–66

    Article  CAS  Google Scholar 

  4. Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R, Eddy SR, Ecker JR, Nathans J (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86(6):1369–1384

    Article  CAS  Google Scholar 

  5. Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216(1):75–84

    Article  CAS  Google Scholar 

  6. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61(12):1939–1958

    Article  Google Scholar 

  7. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  Google Scholar 

  8. Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, Rupprecht R (2016) Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes. Front Cell Neurosci 10:8–12

    Article  Google Scholar 

  9. Perez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14(11):1220–1224

    Article  CAS  Google Scholar 

  10. Santello M, Cali C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331

    Article  CAS  Google Scholar 

  11. Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, Marques F, Cerqueira JJ, Pinto L, Sousa N, Oliveira JF (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19(7):834–841

    Article  CAS  Google Scholar 

  12. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73(12):1172–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of Dr. Mira Jakovcevski (MJ) was supported by a NARSAD Young Investigator Grant (#22809) from the Brain and Behavior Research Foundation. MJ is an “Attias Family Foundation Investigator.” The authors thank Dr. Tobias Straub for analysis of H3K4me3 sequencing data. The work of Dr. Barbara Di Benedetto (BDB) was supported by intramural funding from the University of Regensburg, by the German Federal Ministry of Education and Research (BMBF Grant 01EE1401A), and by the German Research Council (DFG GRK2174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Jakovcevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malik, V.A., Di Benedetto, B., Jakovcevski, M. (2019). Native Chromatin Immunoprecipitation (N-ChIP) in Primary Cortical Rat Astrocytes. In: Di Benedetto, B. (eds) Astrocytes. Methods in Molecular Biology, vol 1938. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9068-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9068-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9067-2

  • Online ISBN: 978-1-4939-9068-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics