Skip to main content

Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1937))

Abstract

Delivery of viral vectors directly into the central nervous system (CNS) has emerged as an important tool for the refinement of gene therapy. Intrathecal delivery by direct lumbar puncture in conscious rodents offers a minimally invasive approach that avoids tissue damage and/or destruction. Here we describe delivery of small quantities of viral vector product to the intrathecal space of rodents via direct lumbar puncture aided by a catheter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    Article  CAS  Google Scholar 

  2. Mestre C, Pelissier T, Fialip J, Wilcox G, Eschalier A (1994) A method to perform direct transcutaneous intrathecal injection in rats. J Pharmacol Toxicol Methods 32(4):197–200

    Article  CAS  Google Scholar 

  3. Fairbanks CA (2003) Spinal delivery of analgesics in experimental models of pain and analgesia. Adv Drug Deliv Rev 55(8):1007–1041

    Article  CAS  Google Scholar 

  4. Vulchanova L, Schuster DJ, Belur LR, Riedl MS, Podetz-Pedersen KM, Kitto KF, Wilcox GL, McIvor RS, Fairbanks CA (2010) Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol Pain 6:31. https://doi.org/10.1186/1744-8069-6-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Honda CN, McIvor RS, Fairbanks CA, Vulchanova L (2013) Visualization of spinal afferent innervation in the mouse colon by AAV8-mediated GFP expression. Neurogastroenterol Motil 25(2):e89–e100. https://doi.org/10.1111/nmo.12057

    Article  CAS  PubMed  Google Scholar 

  6. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, Elde RP, Fairbanks CA, Vulchanova L (2014) Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 8:42. https://doi.org/10.3389/fnana.2014.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuster DJ, Belur LR, Riedl MS, Schnell SA, Podetz-Pedersen KM, Kitto KF, McIvor RS, Vulchanova L, Fairbanks CA (2014) Supraspinal gene transfer by intrathecal adeno-associated virus serotype 5. Front Neuroanat 8:66. https://doi.org/10.3389/fnana.2014.00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardcastle N, Boulis NM, Federici T (2018) AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther 18(3):293–307. https://doi.org/10.1080/14712598.2018.1416089

    Article  CAS  PubMed  Google Scholar 

  9. Dirren E, Aebischer J, Rochat C, Towne C, Schneider BL, Aebischer P (2015) SOD1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice. Ann Clin Transl Neurol 2(2):167–184. https://doi.org/10.1002/acn3.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirai T, Enomoto M, Kaburagi H, Sotome S, Yoshida-Tanaka K, Ukegawa M, Kuwahara H, Yamamoto M, Tajiri M, Miyata H, Hirai Y, Tominaga M, Shinomiya K, Mizusawa H, Okawa A, Yokota T (2014) Intrathecal AAV serotype 9-mediated delivery of shRNA against TRPV1 attenuates thermal hyperalgesia in a mouse model of peripheral nerve injury. Mol Ther 22(2):409–419. https://doi.org/10.1038/mt.2013.247

    Article  CAS  PubMed  Google Scholar 

  11. Shyng C, Nelvagal HR, Dearborn JT, Tyynela J, Schmidt RE, Sands MS, Cooper JD (2017) Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A 114(29):E5920–E5929. https://doi.org/10.1073/pnas.1701832114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watson G, Bastacky J, Belichenko P, Buddhikot M, Jungles S, Vellard M, Mobley WC, Kakkis E (2006) Intrathecal administration of AAV vectors for the treatment of lysosomal storage in the brains of MPS I mice. Gene Ther 13(11):917–925. https://doi.org/10.1038/sj.gt.3302735

    Article  CAS  PubMed  Google Scholar 

  13. Liu CC, Huang ZX, Li X, Shen KF, Liu M, Ouyang HD, Zhang SB, Ruan YT, Zhang XL, Wu SL, Xin WJ, Ma C (2018) Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Exp Neurol 302:104–111. https://doi.org/10.1016/j.expneurol.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  14. Li YY, Li H, Liu ZL, Li Q, Qiu HW, Zeng LJ, Yang W, Zhang XZ, Li ZY (2017) Activation of STAT3-mediated CXCL12 up-regulation in the dorsal root ganglion contributes to oxaliplatin-induced chronic pain. Mol Pain 13:1744806917747425. https://doi.org/10.1177/1744806917747425

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang XS, Li X, Luo HJ, Huang ZX, Liu CC, Wan Q, Xu SW, Wu SL, Ke SJ, Ma C (2017) Activation of the RAGE/STAT3 pathway in the dorsal root ganglion contributes to the persistent pain hypersensitivity induced by lumbar disc herniation. Pain Physician 20(5):419–427

    PubMed  Google Scholar 

  16. Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y (2015) Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 49:293–310. https://doi.org/10.1016/j.bbi.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  17. Morioka N, Fujii S, Kondo S, Zhang FF, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y (2018) Downregulation of spinal astrocytic connexin43 leads to upregulation of interleukin-6 and cyclooxygenase-2 and mechanical hypersensitivity in mice. Glia 66(2):428–444. https://doi.org/10.1002/glia.23255

    Article  PubMed  Google Scholar 

  18. Towne C, Pertin M, Beggah AT, Aebischer P, Decosterd I (2009) Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol Pain 5:52. https://doi.org/10.1186/1744-8069-5-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu Z, Xu J, Rossi GC, Majumdar S, Pasternak GW, Pan YX (2015) Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. J Clin Invest 125(7):2626–2630. https://doi.org/10.1172/JCI81070

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Liu J, Liu ZJ, Xia QJ, He M, Liu R, Liu W, Wang W, Liu J, Zhou XF, Zhang YH, Wang TH (2014) Reversal of bone cancer pain by HSV-1-mediated silencing of CNTF in an afferent area of the spinal cord associated with AKT-ERK signal inhibition. Curr Gene Ther 14(5):377–388

    Article  CAS  Google Scholar 

  21. Zou W, Guo Q, Chen C, Yang Y, Wang E (2011) Intrathecal herpes simplex virus type 1 amplicon vector-mediated human proenkephalin reduces chronic constriction injury-induced neuropathic pain in rats. Mol Med Rep 4(3):529–533. https://doi.org/10.3892/mmr.2011.445

    Article  CAS  PubMed  Google Scholar 

  22. Hu C, Lu Y, Cheng X, Cui Y, Wu Z, Zhang Q (2017) Gene therapy for neuropathic pain induced by spared nerve injury with naked plasmid encoding hepatocyte growth factor. J Gene Med 19:12. https://doi.org/10.1002/jgm.2994

    Article  CAS  Google Scholar 

  23. Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, Mellios N, Milligan ED (2018) Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun 69:91–112. https://doi.org/10.1016/j.bbi.2017.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIDA grant R01DA035931-01, DoD grant W81XWH-15-1-0494, T32 training grant T32DA07234 to K.P., and T32 training grant T32DA007097 to C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Fairbanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pflepsen, K.R., Peterson, C.D., Kitto, K.F., Vulchanova, L., Wilcox, G.L., Fairbanks, C.A. (2019). Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics