Skip to main content

Basic Concepts in Viral Vector-Mediated Gene Therapy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1937))

Abstract

Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Samulski RJ, Berns KI, Tan M et al (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79:2077–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samaranch L, Salegio EA, San Sebastian W et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 23:382–389

    Article  CAS  PubMed  Google Scholar 

  3. Castle MJ, Turunen HT, Vandenberghe LH et al (2016) Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol 1382:133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154

    Article  CAS  PubMed  Google Scholar 

  5. Boutin S, Monteilhet V, Veron P et al (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21:704–712

    Article  CAS  PubMed  Google Scholar 

  6. Peden CS, Burger C, Muzyczka N et al (2004) Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78:6344–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peden CS, Manfredsson FP, Reimsnider SK et al (2009) Striatal readministration of rAAV vectors reveals an immune response against AAV2 capsids that can be circumvented. Mol Ther 17:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12(Suppl 1):S18–S27

    Article  CAS  PubMed  Google Scholar 

  9. Gallo P, Dharmapuri S, Cipriani B et al (2005) Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 12(Suppl 1):S84–S91

    Article  CAS  PubMed  Google Scholar 

  10. Benskey MJ, Manfredsson FP (2016) Lentivirus production and purification. Methods Mol Biol 1382:107–114

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi K, Kato S, Inoue K et al (2016) Altering entry site preference of lentiviral vectors into neuronal cells by pseudotyping with envelope glycoproteins. Methods Mol Biol 1382:175–186

    Article  CAS  PubMed  Google Scholar 

  12. Cannon JR, Sew T, Montero L et al (2011) Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp Neurol 228:41–52

    Article  CAS  PubMed  Google Scholar 

  13. Marconi P, Argnani R, Epstein AL et al (2009) HSV as a vector in vaccine development and gene therapy. Adv Exp Med Biol 655:118–144

    Article  CAS  PubMed  Google Scholar 

  14. Antinone SE, Smith GA (2010) Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol 84:1504–1512

    Article  CAS  PubMed  Google Scholar 

  15. Schmeisser F, Weir JP (2007) Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes. BMC Biotechnol 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Manfredsson FP, Mandel RJ (2011) The development of flexible lentiviral vectors for gene transfer in the CNS. Exp Neurol 229:201–206

    Article  CAS  PubMed  Google Scholar 

  17. Kato S, Inoue K, Kobayashi K et al (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1151

    Article  CAS  PubMed  Google Scholar 

  18. Sinn PL, Hickey MA, Staber PD et al (2003) Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 77:5902–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao G, Vandenberghe LH, Alvira MR et al (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marsic D, Zolotukhin S (2016) Altering tropism of rAAV by directed evolution. Methods Mol Biol 1382:151–173

    Article  CAS  PubMed  Google Scholar 

  22. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394

    Article  CAS  PubMed  Google Scholar 

  23. Kienle E, Senis E, Borner K et al (2012) Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 62:3819

    Google Scholar 

  24. Muller OJ, Kaul F, Weitzman MD et al (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046

    Article  PubMed  CAS  Google Scholar 

  25. Marsic D, Govindasamy L, Currlin S et al (2014) Vector design Tour de Force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther 22:1900–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartel M, Schaffer D, Buning H (2011) Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol 2:204

    Article  PubMed  PubMed Central  Google Scholar 

  27. Horowitz ED, Weinberg MS, Asokan A (2011) Glycated AAV vectors: chemical redirection of viral tissue tropism. Bioconjug Chem 22:529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhong L, Li B, Jayandharan G et al (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202

    Article  CAS  PubMed  Google Scholar 

  29. Kanaan NM, Sellnow RC, Boye SL et al (2017) Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol Ther Nucleic Acids 8:184–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boye SL, Bennett A, Scalabrino ML et al (2016) Impact of heparan sulfate binding on transduction of retina by recombinant adeno-associated virus vectors. J Virol 90:4215–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gulbransen BD (2017) Emerging tools to study enteric neuromuscular function. Am J Physiol 312:G420–G426

    Google Scholar 

  32. Bjorklund T (2016) Expression of multiple functional RNAs or proteins from one viral vector. Methods Mol Biol 1382:41–56

    Article  PubMed  CAS  Google Scholar 

  33. Fagoe ND, Eggers R, Verhaagen J et al (2014) A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Ther 21:242–252

    Article  CAS  PubMed  Google Scholar 

  34. Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116

    Article  CAS  PubMed  Google Scholar 

  35. Benskey MJ, Sellnow RC, Sandoval IM et al (2018) Silencing alpha synuclein in mature nigral neurons results in rapid neuroinflammation and subsequent toxicity. Front Mol Neurosci 11:36

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Leeuw CN, Dyka FM, Boye SL et al (2014) Targeted CNS delivery using human minipromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther Methods Clin Dev 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ngoi SM, Chien AC, Lee CG (2004) Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 4:15–31

    Article  CAS  PubMed  Google Scholar 

  39. Mizuguchi H, Xu Z, Ishii-Watabe A et al (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382

    Article  CAS  PubMed  Google Scholar 

  40. Kim JH, Lee SR, Li LH et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Donnelly ML, Luke G, Mehrotra A et al (2001) Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip. J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  42. Donnelly ML, Hughes LE, Luke G et al (2001) The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. J Gen Virol 82:1027–1041

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Chen O, Wall JBJ et al (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Molecular therapy : the journal of the American Society of. Gene Ther 16:1648–1656

    CAS  Google Scholar 

  45. Raj D, Davidoff AM, Nathwani AC (2011) Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: progress and challenges. Expert Rev Hematol 4:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8:1248–1254

    Article  CAS  PubMed  Google Scholar 

  47. Atasoy D, Aponte Y, Su HH et al (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saunders A, Johnson CA, Sabatini BL (2012) Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front Neural Circuits 6:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schnutgen F, Doerflinger N, Calleja C et al (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21:562–565

    Article  PubMed  CAS  Google Scholar 

  50. Hirsch ML, Wolf SJ, Samulski RJ (2016) Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol 1382:21–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18:87–92

    Article  CAS  PubMed  Google Scholar 

  52. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  PubMed  Google Scholar 

  53. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4:383–391

    Article  CAS  PubMed  Google Scholar 

  54. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18:6–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsu CC, Li HP, Hung YH et al (2010) Targeted methylation of CMV and E1A viral promoters. Biochem Biophys Res Commun 402:228–234

    Article  CAS  PubMed  Google Scholar 

  56. Papadakis ED, Nicklin SA, Baker AH et al (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 4:89–113

    Article  CAS  PubMed  Google Scholar 

  57. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  58. Gorski K, Carneiro M, Schibler U (1986) Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776

    Article  CAS  PubMed  Google Scholar 

  59. Rindt H, Gulick J, Knotts S et al (1993) In vivo analysis of the murine beta-myosin heavy chain gene promoter. J Biol Chem 268:5332–5338

    CAS  PubMed  Google Scholar 

  60. Kugler S (2016) Tissue-specific promoters in the CNS. Methods Mol Biol 1382:81–91

    Article  PubMed  CAS  Google Scholar 

  61. Su ZZ, Sarkar D, Emdad L et al (2005) Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A 102:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wettergren EE, Gussing F, Quintino L et al (2012) Novel disease-specific promoters for use in gene therapy for Parkinson's disease. Neurosci Lett 530:29–34

    Article  CAS  PubMed  Google Scholar 

  63. Greco O, Marples B, Dachs GU et al (2002) Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther 9:1403–1411

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu-Sato S, Huq E, Tepperman JM et al (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    Article  CAS  PubMed  Google Scholar 

  65. Chen R, Meseck ML, Woo SL (2001) Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol Ther 3:584–590

    Article  CAS  PubMed  Google Scholar 

  66. Portales-Casamar E, Swanson DJ, Liu L et al (2010) A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 107:16589–16594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Majewska M, Wysokinska H, Kuzma L et al (2018) Eukaryotic and prokaryotic promoter databases as valuable tools in exploring the regulation of gene transcription: a comprehensive overview. Gene 644:38–48

    Article  CAS  PubMed  Google Scholar 

  68. Dreos R, Ambrosini G, Groux R et al (2017) The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res 45:D51–D55

    Article  CAS  PubMed  Google Scholar 

  69. Dreos R, Ambrosini G, Perier RC et al (2015) The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43:D92–D96

    Article  CAS  PubMed  Google Scholar 

  70. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manfredsson FP, Burger C, Rising AC et al (2009) Tight Long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 17:1857–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chtarto A, Yang X, Bockstael O et al (2007) Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol 204:387–399

    Article  CAS  PubMed  Google Scholar 

  73. Quintino L, Manfre G, Wettergren EE et al (2013) Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson's disease. Mol ther 21:2169–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Breger L, Wettergren EE, Quintino L et al (2016) Regulated gene therapy. Methods Mol Biol 1382:57–66

    Article  CAS  PubMed  Google Scholar 

  75. Arimbasseri AG, Rijal K, Maraia RJ (2014) Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5:e27639

    Article  PubMed  Google Scholar 

  76. Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  CAS  PubMed  Google Scholar 

  78. Ma H, Wu Y, Dang Y et al (2014) Pol III promoters to express small RNAs: delineation of transcription initiation. Mol Ther Nucleic Acids 3:e161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  80. Dreosti E, Odermatt B, Dorostkar MM et al (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Foss SM, Dobryy YL et al (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nikolaou N, Lowe AS, Walker AS et al (2012) Parametric functional maps of visual inputs to the tectum. Neuron 76:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333:1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akerboom J, Carreras Calderon N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walker AS, Burrone J, Meyer MP (2013) Functional imaging in the zebrafish retinotectal system using RGECO. Front Neural Circuits 7:34

    Article  PubMed  PubMed Central  Google Scholar 

  87. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741

    Article  CAS  PubMed  Google Scholar 

  88. Sakai R, Repunte-Canonigo V, Raj CD et al (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  89. Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perron A, Mutoh H, Launey T et al (2009) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  PubMed  Google Scholar 

  92. Granseth B, Odermatt B, Royle SJ et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    Article  CAS  PubMed  Google Scholar 

  93. Balaji J, Ryan TA (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104:20576–20581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanson GT, Aggeler R, Oglesbee D et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  95. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  96. Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  97. Spoida K, Eickelbeck D, Karapinar R et al (2016) Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr Biol 26:1206–1212

    Article  CAS  PubMed  Google Scholar 

  98. Farrell MS, Roth BL (2013) Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res 1511:6–20

    Article  CAS  PubMed  Google Scholar 

  99. Alexander GM, Rogan SC, Abbas AI et al (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ellis BL, Hirsch ML, Barker JC et al (2013) A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  102. Denning W, Das S, Guo S et al (2013) Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 53:308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  CAS  PubMed  Google Scholar 

  104. Tuszynski MH, Thal L, Pay M et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  105. Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4:143–154

    Article  CAS  PubMed  Google Scholar 

  106. Duan D (2016) Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 21:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zincarelli C, Soltys S, Rengo G et al (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080

    Article  CAS  PubMed  Google Scholar 

  108. Nakai H, Herzog RW, Hagstrom JN et al (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600–4607

    CAS  PubMed  Google Scholar 

  109. Gruntman AM, Mueller C, Flotte TR et al (2012) Gene transfer in the lung using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit14D.12

    Google Scholar 

  110. Benskey MJ, Manfredsson FP (2016) Intraparenchymal Stereotaxic Delivery of rAAV and Special Considerations in Vector Handling. Methods Mol Biol 1382:199–215

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredric P. Manfredsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benskey, M.J. et al. (2019). Basic Concepts in Viral Vector-Mediated Gene Therapy. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics