Skip to main content

Identification of Cell Types from Single-Cell Transcriptomic Data

  • Protocol
  • First Online:
Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Unprecedented technological advances in single-cell RNA-sequencing (scRNA-seq) technology have now made it possible to profile genome-wide expression in single cells at low cost and high throughput. There is substantial ongoing effort to use scRNA-seq measurements to identify the “cell types” that form components of a complex tissue, akin to taxonomizing species in ecology. Cell type classification from scRNA-seq data involves the application of computational tools rooted in dimensionality reduction and clustering, and statistical analysis to identify molecular signatures that are unique to each type. As datasets continue to grow in size and complexity, computational challenges abound, requiring analytical methods to be scalable, flexible, and robust. Moreover, careful consideration needs to be paid to experimental biases and statistical challenges that are unique to these measurements to avoid artifacts. This chapter introduces these topics in the context of cell-type identification, and outlines an instructive step-by-step example bioinformatic pipeline for researchers entering this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vickaryous MK, Hall BK (2006) Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81(3):425–455

    Article  PubMed  Google Scholar 

  2. Regev A et al (2017) The human cell atlas. Elife:6

    Google Scholar 

  3. Tosches MA et al (2018) Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391):881–888

    Article  CAS  PubMed  Google Scholar 

  4. Boisset JC et al (2018) Mapping the physical network of cellular interactions. Nat Methods

    Google Scholar 

  5. Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541(7637):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cleary B et al (2017) Efficient generation of transcriptomic profiles by random composite measurements. Cell 171(6):1424–1436.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng GX et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Habib N et al (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353(6302):925–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lake BB et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352(6293):1586–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shekhar K et al (2016) Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5):1308–1323.e30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Villani A-C et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356(6335):eaah4573

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tasic B et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19(2):335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18(9):530

    Article  CAS  PubMed  Google Scholar 

  17. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133

    Article  CAS  PubMed  Google Scholar 

  18. Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9(11):868–882

    Article  CAS  PubMed  Google Scholar 

  19. Ecker JR et al (2017) The BRAIN initiative cell census consortium: lessons learned toward generating a comprehensive BRAIN cell atlas. Neuron 96(3):542–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolodziejczyk AA et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620

    Article  CAS  PubMed  Google Scholar 

  21. Islam S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163

    Article  CAS  PubMed  Google Scholar 

  22. Menon V (2017) Clustering single cells: a review of approaches on high- and low-depth single-cell RNA-seq data. Brief Funct Genomics

    Google Scholar 

  23. Hicks SC, Teng M, Irizarry RA (2015, 025528) On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv

    Google Scholar 

  24. Butler A et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haghverdi L et al (2018) Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez R et al (2018) Bayesian inference for a generative model of transcriptome profiles from single-cell RNA sequencing. bioRxiv:292037

    Google Scholar 

  27. Lee JH et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177):1360–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stahl PL et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294):78–82

    Article  CAS  PubMed  Google Scholar 

  29. Chen KH et al (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233):aaa6090

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lubeck E et al (2014) Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 11(4):360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuzik J et al (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34(2):175

    Article  CAS  PubMed  Google Scholar 

  32. Dixit A et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–1866.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stoeckius M et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14(9):865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frieda KL et al (2017) Synthetic recording and in situ readout of lineage information in single cells. Nature 541(7635):107–111

    Article  CAS  PubMed  Google Scholar 

  35. Raj B et al (2018) Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol 36(5):442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pertea M et al (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11(9):1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villani AC, Shekhar K (2017) Single-cell RNA sequencing of human T cells. Methods Mol Biol 1514:203–239

    Article  CAS  PubMed  Google Scholar 

  38. Satija R et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lake BB et al (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36(1):70–80

    Article  CAS  PubMed  Google Scholar 

  40. Pandey S et al (2018) Comprehensive identification and spatial mapping of Habenular neuronal types using single-cell RNA-Seq. Curr Biol 28(7):1052–1065.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrews TS, Hemberg M (2017) Identifying cell populations with scRNASeq. Mol Asp Med

    Google Scholar 

  42. Brennecke P et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093

    Article  CAS  PubMed  Google Scholar 

  43. Keogh E, Mueen A (2017) Curse of dimensionality. In: Encyclopedia of machine learning and data mining. Springer, pp 314–315

    Google Scholar 

  44. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  Google Scholar 

  45. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York

    Google Scholar 

  46. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT, Cambridge, UK

    Google Scholar 

  47. Haghverdi L et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13(10):845

    Article  CAS  PubMed  Google Scholar 

  48. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E Stat Nonlinear Soft Matter Phys 80(5 Pt 2):056117

    Article  Google Scholar 

  49. Levine JH et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LVD M, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605

    Google Scholar 

  51. Soneson C, Robinson MD (2018) Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 15(4):255

    Article  CAS  PubMed  Google Scholar 

  52. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

Download references

Acknowledgments

K. S. would like to acknowledge support from NIH 1K99EY028625-01, the Klarman Cell Observatory, and the laboratory of Dr. Aviv Regev at the Broad Institute. We would like to gratefully acknowledge critical feedback from Drs. Inbal Benhar and Jose Ordovas-Montanes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karthik Shekhar or Vilas Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shekhar, K., Menon, V. (2019). Identification of Cell Types from Single-Cell Transcriptomic Data. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics