Skip to main content

Single-Cell Allele-Specific Gene Expression Analysis

  • Protocol
  • First Online:
Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average gene expression across cells. Single-cell RNA sequencing (scRNA-seq) allows the comparison of expression distribution between the two alleles of a diploid organism, and characterization of allele-specific bursting. Here we describe SCALE, a bioinformatic and statistical framework for allele-specific gene expression analysis by scRNA-seq. SCALE estimates genome-wide bursting kinetics at the allelic level while accounting for technical bias and other complicating factors such as cell size. SCALE detects genes with significantly different bursting kinetics between the two alleles, as well as genes where the two alleles exhibit non-independent bursting processes. Here, we illustrate SCALE on a mouse blastocyst single-cell dataset with step-by-step demonstration from the upstream bioinformatic processing to the downstream biological interpretation of SCALE’s output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckland PR (2004) Allele-specific gene expression differences in humans. Hum Mol Genet 13(2):R255–R260. https://doi.org/10.1093/hmg/ddh227

    Article  CAS  PubMed  Google Scholar 

  2. Deng Q, Ramskold D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196. https://doi.org/10.1126/science.1245316

    Article  CAS  PubMed  Google Scholar 

  3. Reinius B, Sandberg R (2015) Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 16:653–664. https://doi.org/10.1038/nrg3888

    Article  CAS  PubMed  Google Scholar 

  4. Reinius B, Mold JE, Ramskold D, Deng Q, Johnsson P, Michaelsson J, Frisen J, Sandberg R (2016) Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet 48:1430–1435. https://doi.org/10.1038/ng.3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM (2011) A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res 21:1728–1737. https://doi.org/10.1101/gr.119784.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leon-Novelo LG, McIntyre LM, Fear JM, Graze RM (2014) A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 15:920. https://doi.org/10.1186/1471-2164-15-920

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang Y, Zhang NR, Li M (2017) SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Genome Biol 18(1):74. https://doi.org/10.1186/s13059-017-1200-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benitez JA, Cheng S, Deng Q (2017) Revealing allele-specific gene expression by single-cell transcriptomics. Int J Biochem Cell Biol 90:155–160. https://doi.org/10.1016/j.biocel.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  9. Kim JK, Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14:R7. https://doi.org/10.1186/gb-2013-14-1-r7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levesque MJ, Ginart P, Wei Y, Raj A (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10:865–867. https://doi.org/10.1038/nmeth.2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with smart-Seq. Nat Biotechnol 30(8):763–765. https://doi.org/10.1038/nbt.2325

    Article  CAS  PubMed  Google Scholar 

  12. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  13. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia C, Hu Y, Kelly D, Kim J, Li M, Zhang NR (2017) Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Nucleic Acids Res 45(19):10978–10988. https://doi.org/10.1093/nar/gkx754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR (2018) SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods 15(7):539–542. https://doi.org/10.1038/s41592-018-0033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li WV, Li JJ (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun 9(1):997. https://doi.org/10.1038/s41467-018-03405-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  23. Pierson E, Yau C (2015) ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol 16:241. https://doi.org/10.1186/s13059-015-0805-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, Hemberg M (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14(5):483–486. https://doi.org/10.1038/nmeth.4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 14(4):414–416. https://doi.org/10.1038/nmeth.4207

    Article  CAS  PubMed  Google Scholar 

  26. Tsoucas D, Yuan GC (2018) GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection. Genome Biol 19(1):58. https://doi.org/10.1186/s13059-018-1431-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chong S, Chen C, Ge H, Xie XS (2014) Mechanism of transcriptional bursting in bacteria. Cell 158:314–326. https://doi.org/10.1016/j.cell.2014.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24:853–865. https://doi.org/10.1016/j.molcel.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  29. Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358–368. https://doi.org/10.1016/j.cell.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–474. https://doi.org/10.1126/science.1198817

    Article  CAS  PubMed  Google Scholar 

  31. Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136. https://doi.org/10.1016/s0006-3495(01)75949-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16:133–145. https://doi.org/10.1038/nrg3833

    Article  CAS  PubMed  Google Scholar 

  33. Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell 58:339–352. https://doi.org/10.1016/j.molcel.2015.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallejos CA, Marioni JC, Richardson S (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11:e1004333. https://doi.org/10.1371/journal.pcbi.1004333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skinner SO, Xu H, Nagarkar-Jaiswal S, Freire PR, Zwaka TP, Golding I (2016) Single-cell analysis of transcription kinetics across the cell cycle. Elife 5:e12175. https://doi.org/10.7554/eLife.12175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ochiai H, Sugawara T, Sakuma T, Yamamoto T (2014) Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Sci Rep 4:7125. https://doi.org/10.1038/srep07125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu H, Sepulveda LA, Figard L, Sokac AM, Golding I (2015) Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12:739–742. https://doi.org/10.1038/nmeth.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant CA142538 and a developmental award from the UNC Lineberger Comprehensive Cancer Center 2017T109 (to YJ). We thank Dr. Nancy R Zhang and Dr. Mingyao Li for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dong, M., Jiang, Y. (2019). Single-Cell Allele-Specific Gene Expression Analysis. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics