Skip to main content
Book cover

Legionella pp 429–443Cite as

Analysis of the Pulmonary Microbiome Composition of Legionella pneumophila-Infected Patients

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

The analysis of the lung microbiome composition is a field of research that recently emerged. It gained great interest in pulmonary diseases such as pneumonia since the microbiome seems to be involved in host immune responses, inflammation, and protection against pathogens. Thus, it is possible that the microbial communities living in the lungs play a role in the outcome and severity of lung infections such as Legionella-caused pneumonia and in the response to antibiotic therapy. In this chapter, all steps necessary for the characterization of the bacterial and fungal fraction of the lung microbiome using high-throughput sequencing approaches are explained, starting from the selection of clinical samples to the analysis of the taxonomic composition, diversity, and ecology of the microbiome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32(4):557–578

    Article  CAS  PubMed  Google Scholar 

  2. Andrews S (2010) FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 26 Apr 2010

  3. Hannon Lab (2009) FASTX toolkit. http://hannonlab.cshl.edu/fastx_toolkit/index.html. Accessed 2 Feb 2010

  4. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aronesty E (2011) ea-utils: “Command-line tools for processing biological sequencing data”. https://expressionanalysis.github.io/ea-utils/. Accessed 20 June 2017

  6. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  10. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  11. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633–D642

    Article  CAS  PubMed  Google Scholar 

  12. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kõljalg U, Larsson KH, Abarenkov K et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166(3):1063–1068

    Article  PubMed  Google Scholar 

  14. Deshpande V, Wang Q, Greenfield P et al (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108(1):1–5

    Article  PubMed  Google Scholar 

  15. Stoddard SF, Smith BJ, Hein R et al (2015) rrnDB: improved tools for interpreting and rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598. https://doi.org/10.1093/nar/gku1201

    Article  CAS  PubMed  Google Scholar 

  16. Angly FE, Dennis PG, Skarshewski A et al (2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2:11. https://doi.org/10.1186/2049-2618-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  17. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 28 Sept 2017

  18. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oksanen J, Guillaume F, Friendly M et al (2017) vegan: Community Ecology Package. R package version 2.4-4. http://CRAN.R-project.org/package=vegan. Accessed 24 Aug 2017

  20. Goodrich JK, Di Rienzi SC, Poole AC (2014) Conducting a microbiome study. Cell 158(2):250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

  24. Dickson RP, Erb-Downward JR, Freeman CM et al (2017) Bacterial topography of the healthy human lower respiratory tract. MBio 8(1):e02287-16. https://doi.org/10.1128/mBio.02287-16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mizrahi H, Peretz A, Lesnik R et al (2017) Comparison of sputum microbiome of legionellosis-associated patients and other pneumonia patients: indications for polybacterial infections. Sci Rep 7:40114. https://doi.org/10.1038/srep40114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wesolowska-Andersen A, Bahl MI, Carvalho V et al (2014) Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2:19. https://doi.org/10.1186/2049-2618-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stämmler F, Gläsner J, Hiergeist A et al (2016) Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4(1):28. https://doi.org/10.1186/s40168-016-0175-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tourlousse DM, Yoshiike S, Ohashi A et al (2017) Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res 45(4):e23. https://doi.org/10.1093/nar/gkw984

    Article  CAS  PubMed  Google Scholar 

  29. Illumina (2013) 16S Metagenomic sequencing library preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

  30. Illumina (2017) 16S Metagenomics studies with the MiSeq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote_16s_sequencing.pdf

Download references

Acknowledgments

Work in the CB laboratory is financed by the Institut Pasteur and AECP was fianced by a fellowship from grant ANR-10-LABX-62-IBEID and grant ANR 15 CE17 0014 03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Buchrieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez-Cobas, A.E., Buchrieser, C. (2019). Analysis of the Pulmonary Microbiome Composition of Legionella pneumophila-Infected Patients. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics