Skip to main content
Book cover

Legionella pp 399–417Cite as

The Mouse as a Model for Pulmonary Legionella Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Infection of C57BL/6 mice with wild-type Legionella pneumophila typically results in very mild disease. However, in mice where the cytosolic recognition of flagellin is impaired by mutation, L. pneumophila infection results in more severe lung inflammation that is reminiscent of Legionnaires’ disease. This can be replicated in wild-type mice by using aflagellated mutants of L. pneumophila. These models greatly facilitate the investigation of L. pneumophila virulence factors and the complex pulmonary immune system that is triggered by infection. Here we describe methods for infecting C57BL/6 mice with aflagellated L. pneumophila, the quantification of bacterial load in the lungs and isolation and analysis of invading immune cells. These assays enable the identification of phagocyte subsets and can determine whether phagocytic cells act as a replicative niche for L. pneumophila replication.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Glavin FL, Winn WCJ, Craighead JE (1979) Ultrastructure of lung in Legionnaires’ disease: observations of three biopsies done during the Vermont epidemic. Ann Intern Med 90(4):555–559

    Article  CAS  Google Scholar 

  2. Fraser DW et al (1977) Legionnaires’ disease. N Engl J Med 297(22):1189–1197

    Article  CAS  Google Scholar 

  3. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15(3):506–526

    Article  Google Scholar 

  4. Marston BJ, Lipman HB, Breiman RF (1994) Surveillance for Legionnaires’ disease: risk factors for morbidity and mortality. Arch Intern Med 154(21):2417–2422

    Article  CAS  Google Scholar 

  5. Fitzgeorge RB et al (1983) Aerosol infection of animals with strains of Legionella pneumophila of different virulence: comparison with intraperitoneal and intranasal routes of infection. J Hyg 90(1):81–89

    Article  CAS  Google Scholar 

  6. Brieland J et al (1994) Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires’ disease. Am J Pathol 145(6):1537–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Diez E et al (2002) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55

    Article  Google Scholar 

  8. Tenthorey JL et al (2017) The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358(6365):888–893

    Article  CAS  Google Scholar 

  9. Pereira MSF et al (2011) The Nlrc4 inflammasome contributes to restriction of pulmonary infection by flagellated Legionella spp that trigger pyroptosis. Front Microbiol 2:33

    PubMed  PubMed Central  Google Scholar 

  10. Pereira MSF et al (2011) Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 187(12):6447–6455

    Article  CAS  Google Scholar 

  11. Isberg RR, O’Connor T, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cozy niche inside host cells. Nat Rev Microbiol 7(1):13–24

    Article  CAS  Google Scholar 

  12. Archer KA, Roy CR (2006) MyD88-dependent responses involving Toll-Like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect Immun 74(6):3325–3333

    Article  CAS  Google Scholar 

  13. Brown AS et al (2016) Cooperation between monocyte-derived cells and lymphoid cells in the acute response to a bacterial lung pathogen. PLoS Pathog 12(6):e1005691

    Article  Google Scholar 

  14. Copenhaver AM et al (2015) IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis. Proc Natl Acad Sci 112(24):7557–7562

    Article  CAS  Google Scholar 

  15. Ziltener P, Reinheckel T, Oxenius A (2016) Neutrophil and alveolar macrophage-mediated innate immune control of Legionella pneumophila lung infection via TNF and ROS. PLoS Pathog 12(4):e1005591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Hartland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ng, G.Z., Solomatina, A., van Driel, I.R., Hartland, E.L. (2019). The Mouse as a Model for Pulmonary Legionella Infection. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics