Skip to main content

The Pathometabolism of Legionella Studied by Isotopologue Profiling

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Metabolic pathways and fluxes can be analyzed under in vivo conditions by incorporation experiments using general 13C-labelled precursors. On the basis of the isotopologue compositions in amino acids or other metabolites, the incorporation rates of the supplied precursors and the pathways of their utilization can be studied in considerable detail. In this chapter, the method of isotopologue profiling is illustrated with recent work on the metabolism of intracellular living Legionella pneumophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garduno RA, Garduno E, Hiltz M, Hoffman PS (2002) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70:6273–6283

    Article  CAS  Google Scholar 

  2. Greub G, Raoult D (2003) Morphology of Legionella pneumophila according to their location within Hartmannella vermiformis. Res Microbiol 154:619–621

    Article  Google Scholar 

  3. Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40

    Article  CAS  Google Scholar 

  4. Robertson P, Abdelhady H, Garduno RA (2014) The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila. Front Microbiol 5:670

    Article  Google Scholar 

  5. Eisenreich W, Heuner K (2016) The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 590:3868–3886

    Article  CAS  Google Scholar 

  6. Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10:445–456

    Article  CAS  Google Scholar 

  7. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Ropenack-Lahaye EV, Wang TL, Eisenreich W, Dormann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6:e29107

    Article  Google Scholar 

  8. Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412

    Article  CAS  Google Scholar 

  9. Eylert E, Schar J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W (2008) Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017

    Article  CAS  Google Scholar 

  10. Götz A, Eylert E, Eisenreich W, Goebel W (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 5:e10586

    Article  Google Scholar 

  11. Schunder E, Gillmaier N, Kutzner E, Herrmann V, Lautner M, Heuner K, Eisenreich W (2014) Amino acid uptake and metabolism of Legionella pneumophila hosted by Acanthamoeba castellanii. J Biol Chem 289:21040–21054

    Article  CAS  Google Scholar 

  12. Grubmüller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W (2014) Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front Cell Infect Microbiol 4:156

    PubMed  PubMed Central  Google Scholar 

  13. Hoffman PS (2008) Microbial physiology. In: Hoffman PS, Klein T, Friedman H (eds) Legionella pneumophila: pathogenesis and immunity. Springer Publishing Corp, New York, pp 113–131

    Google Scholar 

  14. Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9:615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ristroph JD, Hedlund KW, Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13:115–119

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci U S A 102:9924–9929

    Article  CAS  Google Scholar 

  18. Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–1537

    Article  CAS  Google Scholar 

  20. Fonseca MV, Sauer J-D, Swanson MS (2008) Nutrient acquisition and assimilation strategies of Legionella pneumophila. In: Heuner K, Swanson MS (eds) Legionella – Molecular Microbiology. Horizon Scientific Press, Norwich, pp 213–226

    Google Scholar 

  21. Keen MG, Hoffman MS (1984) Metabolic pathways and nitrogen metabolism in Legionella pneumophila. Curr Microbiol 11:81–88

    Article  CAS  Google Scholar 

  22. Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243

    Article  CAS  Google Scholar 

  23. Gillmaier N, Schunder E, Kutzner E, Tlapak H, Rydzewski K, Herrmann V, Stammler M, Lasch P, Eisenreich W, Heuner K (2016) Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila. J Biol Chem 291:6471–6482

    Article  CAS  Google Scholar 

  24. Herrmann V, Eidner A, Rydzewski K, Bladel I, Jules M, Buchrieser C, Eisenreich W, Heuner K (2011) GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 301:133–139

    Article  CAS  Google Scholar 

  25. Harada E, Iida K, Shiota S, Nakayama H, Yoshida S (2010) Glucose metabolism in Legionella pneumophila: dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J Bacteriol 192:2892–2899

    Article  CAS  Google Scholar 

  26. Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557

    Article  CAS  Google Scholar 

  27. Fonseca MV, Swanson MS (2014) Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 4:12

    Article  Google Scholar 

  28. Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H (2016) Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Mol Microbiol 100:229–246

    Article  Google Scholar 

  29. Häuslein I, Sahr T, Escoll P, Klausner N, Eisenreich W, Buchrieser C (2017) Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism. Open Biol 7:170149

    Article  Google Scholar 

  30. Oliva G, Sahr T, Rolando M, Knoth M, Buchrieser C (2017) A unique cis-encoded small noncoding RNA is regulating Legionella pneumophila Hfq expression in a life cycle-dependent manner. MBio 8:e02182–e02116

    Article  CAS  Google Scholar 

  31. Lee WN, Byerley LO, Bergner EA, Edmond J (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458

    Article  CAS  Google Scholar 

  32. Ahmed Z, Zeeshan S, Huber C, Hensel M, Schomburg D, Munch R, Eylert E, Eisenreich W, Dandekar T (2014) ‘Isotopo’ a database application for facile analysis and management of mass isotopomer data. Database (Oxford) 2014:bau077

    Article  Google Scholar 

Download references

Acknowledgments

We thank our coworkers Nadine Gillmaier, Vroni Herrmann, Eva Eylert, Claudia Huber, Erika Kutzner, Kerstin Rydzewski, and Eva Schunder for their enthusiastic help in establishing and optimizing the methods described in this article. This work was financed by grants from the Deutsche Forschungsgemeinschaft DFG (Bonn, Germany) (EI 384/11-1 and HE 2845/6-1, /9-1, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Heuner or Wolfgang Eisenreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heuner, K., Kunze, M., Chen, F., Eisenreich, W. (2019). The Pathometabolism of Legionella Studied by Isotopologue Profiling. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics