Skip to main content

Quantitative Imaging Flow Cytometry of Legionella-Containing Vacuoles in Dually Fluorescence-Labeled Dictyostelium

  • Protocol
  • First Online:
Book cover Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

Legionella pneumophila enters and replicates within protozoan and mammalian phagocytes by forming through a conserved mechanism a specialized intracellular compartment termed the Legionella-containing vacuole (LCV). This compartment avoids fusion with bactericidal lysosomes but communicates extensively with different cellular vesicle trafficking pathways and ultimately interacts closely with the endoplasmic reticulum. In order to delineate the process of pathogen vacuole formation and to better understand L. pneumophila virulence, an analysis of markers of the different trafficking pathways on the pathogen vacuole is crucial. Here, we describe a method for rapid, objective and quantitative analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we employ an imaging flow cytometry approach and use the D. discoideum –L. pneumophila infection model. Imaging flow cytometry enables quantification of many different parameters by fluorescence microscopy of cells in flow, rapidly producing statistically robust data from thousands of cells. We also describe the generation of D. discoideum strains simultaneously producing two different fluorescently tagged probes that enable visualization of compartments and processes in parallel. The quantitative imaging flow technique can be corroborated and enhanced by laser scanning confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACES:

N-(2-acetamido)-2-aminoethanesulfonic acid

AYE:

ACES yeast extract

Cam:

Chloramphenicol

CYE:

Charcoal yeast extract

DMSO:

Dimethyl sulfoxide

DPBS:

Dulbecco's Phosphate-Buffered Saline

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

Icm/Dot:

Intracellular multiplication/defective organelle trafficking

IFC:

Imaging flow cytometry

LCV:

Legionella-containing vacuole

MOI:

Multiplicity of infection

PFA:

Paraformaldehyde

RT:

Room temperature

SSC:

Side scatter

T4SS:

Type IV secretion system

References

  1. Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  CAS  Google Scholar 

  2. Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V et al (2014) Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol 30:79–109

    Article  CAS  Google Scholar 

  3. Finsel I, Hilbi H (2015) Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 17:935–950

    Article  CAS  Google Scholar 

  4. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  CAS  Google Scholar 

  5. Bärlocher K, Welin A, Hilbi H (2017) Formation of the Legionella replicative compartment at the crossroads of retrograde trafficking. Front Cell Infect Microbiol 7:482

    Article  Google Scholar 

  6. Personnic N, Bärlocher K, Finsel I, Hilbi H (2016) Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol 24:450–462

    Article  CAS  Google Scholar 

  7. Steiner B, Weber S, Hilbi H (2018) Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 308:49–57

    Article  CAS  Google Scholar 

  8. Hoffmann C, Finsel I, Otto A, Pfaffinger G et al (2014) Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 16:1034–1052

    Article  CAS  Google Scholar 

  9. Schmölders J, Manske C, Otto A, Hoffmann C et al (2017) Comparative proteomics of purified pathogen vacuoles correlates intracellular replication of Legionella pneumophila with the small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 16:622–641

    Article  Google Scholar 

  10. Urwyler S, Nyfeler Y, Ragaz C, Lee H et al (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  CAS  Google Scholar 

  11. Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3:286–296

    Article  CAS  Google Scholar 

  12. Hoffmann C, Harrison CF, Hilbi H (2014) The natural alternative: protozoa as cellular models for Legionella infection. Cell Microbiol 16:15–26

    Article  CAS  Google Scholar 

  13. Weber S, Hilbi H (2014) Live cell imaging of phosphoinositide dynamics during Legionella infection. Methods Mol Biol 1197:153–167

    Article  Google Scholar 

  14. Weber S, Wagner M, Hilbi H (2014) Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 5:e00839–13

    Article  Google Scholar 

  15. Veltman DM, Akar G, Bosgraaf L, Van Haastert PJM (2009) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61:110–118

    Article  CAS  Google Scholar 

  16. Steiner B, Swart AL, Welin A, Weber S et al (2017) ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep 18:1817–1836

    Article  CAS  Google Scholar 

  17. Bärlocher K, Hutter CAJ, Swart AL, Steiner B et al (2017) Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun 8:1543

    Article  Google Scholar 

  18. Welin A, Weber S, Hilbi H (2018) Quantitative imaging flow cytometry of Legionella-infected Dictyostelium reveals the impact of retrograde trafficking on pathogen vacuole composition. Appl Environ Microbiol 84:e00158–18

    Article  CAS  Google Scholar 

  19. Finsel I, Ragaz C, Hoffmann C, Harrison CF et al (2013) The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14:38–50

    Article  CAS  Google Scholar 

  20. Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF et al (2013) Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog 9:e1003598

    Article  CAS  Google Scholar 

  21. Weber SS, Ragaz C, Reus K, Nyfeler Y et al (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  Google Scholar 

  22. Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  CAS  Google Scholar 

  23. Barisch C, Paschke P, Hagedorn M, Maniak M et al (2015) Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 17:1332–1349

    Article  CAS  Google Scholar 

  24. Kirsten JH, Xiong Y, Davis CT, Singleton CK (2008) Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 9:71

    Article  Google Scholar 

  25. Derre I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72:3048–3053

    Article  CAS  Google Scholar 

  26. Ragaz C, Pietsch H, Urwyler S, Tiaden A et al (2008) The Legionella pneumophila phosphatidylinositol-4-phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  CAS  Google Scholar 

  27. Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208

    Article  CAS  Google Scholar 

  28. Horwitz MA (1983) The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126

    Article  CAS  Google Scholar 

  29. Feeley JC, Gibson RJ, Gorman GW, Langford NC et al (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10:437–441

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Loovers HM, Kortholt A, de Groote H, Whitty L et al (2007) Regulation of phagocytosis in Dictyostelium by the inositol 5-phosphatase OCRL homolog Dd5P4. Traffic 8:618–628

    Article  CAS  Google Scholar 

  31. Cocucci SM, Sussman M (1970) RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol 45:399–407

    Article  CAS  Google Scholar 

  32. Johansson J, Karlsson A, Bylund J, Welin A (2015) Phagocyte interactions with Mycobacterium tuberculosis--Simultaneous analysis of phagocytosis, phagosome maturation and intracellular replication by imaging flow cytometry. J Immunol Meth 427:73–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of H.H. was supported by the Swiss National Science Foundation (SNF; 31003A_153200), the Novartis Foundation for Medical-Biological Research, and the OPO foundation. A.W. was supported by a grant from the Swedish Research Council (2014-396). Imaging flow cytometry was performed using equipment of the Flow Cytometry Facility (University of Zürich) and microscopy using equipment of the Centre for Microscopy and Image Analysis (University of Zürich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Welin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Welin, A., Weber, S., Hilbi, H. (2019). Quantitative Imaging Flow Cytometry of Legionella-Containing Vacuoles in Dually Fluorescence-Labeled Dictyostelium. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics