Skip to main content

In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Recently, long noncoding RNAs (lncRNAs) are shown to be implicating nuclear domain organization and gene regulation by mediating long-range chromatin interactions. Chromosome conformation capture (3C) is a method used to study such long-range interaction between two different loci in the 3D nuclear space. Through successive improvement in resolution and throughput, 3C, chromosome conformation capture on chip (4C), and chromosome conformation capture carbon copy (5C) to Hi-C methods were developed to study interactions between loci from one versus one scale to an unprecedented genome-wide resolution. In situ Hi-C is a variant of Hi-C in which proximity ligation is performed at the intact nuclei to improve the signal-to-noise ratio and throughput of the experiment to provide useful genome-wide contact frequency matrix/maps. The contact frequency maps obtained could be used for physical ordering of scaffolds in complex genome assembly projects, in deducing the nuclear domain organization in high resolution and in identifying specific long-range interactions between genomic regions of interest. In this chapter, we describe in detail a protocol for in situ Hi-C used on crops like barley, wheat, rye, oat, and evening primrose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131(7):1340–1353. https://doi.org/10.1016/j.cell.2007.10.056

    Article  CAS  PubMed  Google Scholar 

  2. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. https://doi.org/10.1126/science.1138341

    Article  CAS  PubMed  Google Scholar 

  3. Jin J, Liu J, Wang H, Wong L, Chua N-H (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071. https://doi.org/10.1093/bioinformatics/btt107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Chung PJ, Liu J, Jang I-C, Kean MJ, Xu J, Chua N-H (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453. https://doi.org/10.1101/gr.165555.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Chekanova JA (2017) Long noncoding RNAs in plants. Adv Exp Med Biol 1008:133–154. https://doi.org/10.1007/978-981-10-5203-3_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  7. Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M (2009) Tissue and expression level specific chromatin looping at Maize b1 Epialleles. Plant Cell 21(3):832–842. https://doi.org/10.1105/tpc.108.064329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348. https://doi.org/10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  9. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299. https://doi.org/10.1101/gr.5571506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L (2011) Solid-phase chromosome conformation capture for structural characterization of genome architectures. Nat Biotechnol 30(1):90–98. https://doi.org/10.1038/nbt.2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at Kilobase resolution reveals principles of chromatin looping. Cell 159:1665. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagano T, Várnai C, Schoenfelder S, Javierre BM, Wingett SW, Fraser P (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16(1):175. https://doi.org/10.1186/s13059-015-0753-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47(6):598. https://doi.org/10.1038/ng.3286

    Article  CAS  PubMed  Google Scholar 

  15. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  16. Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, Hesson J, Cavanaugh C, Ware CB, Krumm A, Shendure J (2018) Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. Methods 142:59–73. https://doi.org/10.1101/184846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39. https://doi.org/10.1002/jcb.22116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472. https://doi.org/10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  19. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31(12):1119–1125. https://doi.org/10.1038/nbt.2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427. https://doi.org/10.1038/nature22043

    Article  CAS  PubMed  Google Scholar 

  21. Hovel I, Louwers M, Stam M (2012) 3C technologies in plants. Methods 58:204–211. https://doi.org/10.1016/j.ymeth.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  22. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11. https://doi.org/10.1186/1746-4811-3-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York, p 1834

    Google Scholar 

  24. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York, p 1823

    Google Scholar 

  25. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York, p 1815

    Google Scholar 

  26. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York, p 1824

    Google Scholar 

  27. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D'Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KF, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1):10–12 ISSN 2226-6089

    Article  Google Scholar 

  29. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN]

    Google Scholar 

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quinlan A, Hall I (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lajoie BR, Dekker J, Kaplan N (2015) The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods 72:65–75

    Article  CAS  PubMed  Google Scholar 

  33. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P (2017) Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 18:125

    Article  PubMed  PubMed Central  Google Scholar 

  36. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaplan N, Dekker J (2013) High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol 31:1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burton JN, Liachko I, Dunham MJ, Shendure J (2014) Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4:1339–1346

    Article  CAS  Google Scholar 

  39. James G (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    Article  CAS  PubMed  Google Scholar 

  40. Liu C (2017) In situ Hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods Mol Biol 1629:155–166

    Article  CAS  PubMed  Google Scholar 

  41. Belaghzal H, Dekker J, Gibcus JH (2017) Hi-C 2.0: an optimized hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 123:56–65. https://doi.org/10.1016/j.ymeth.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Putney S, Benkovic S, Schimmel P (1981) A DNA fragment with an alpha-phosphorothioate nucleotide at one end is asymmetrically blocked from digestion by exonuclease III and can be replicated in vivo. Proc Natl Acad Sci U S A 78:7350–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by core funding of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, and project funding (“SHAPE”) from the German Federal Ministry of Education and Research (BMBF, Grant no. 031B0190A) to Dr. Nils Stein and Dr. Martin Mascher. We thank Dr. Erez Lieberman-Aiden and Dr. Olga Dudchenko for helpful discussions on the in situ Hi-C method. We thank Ines Walde and Manuela Knauft for excellent technical assistance during protocol development and TCC/Hi-C library construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Padmarasu, S., Himmelbach, A., Mascher, M., Stein, N. (2019). In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics