Skip to main content

Discovery, Identification, and Functional Characterization of Plant Long Intergenic Noncoding RNAs After Virus Infection

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Long intergenic noncoding RNAs (lincRNAs), which possess diverse features such as remodeling chromatin and genome architecture, RNA stabilization, and genome architecture, are important regulatory factors in plant genomes. They serve to fine-tune the expression of neighboring genes. Here, we describe a procedure of discovery, identification, and functional characterization of plant lincRNAs after virus infection. From high-throughput RNA-Seq transcriptome analysis, the noncoding RNA transcripts with significant fold changes (upregulation or downregulation) will be discovered and identified. The lincRNA of interest will be further confirmed and validated using rapid amplification of cDNA ends (RACE). In addition, functional characterization of the lincRNA will be followed up through overexpression and knockdown strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Au PC, Zhu QH, Dennis ES, Wang MB (2011) Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biol 8(3):404–414

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Wang H, Chua NH (2015) Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13(3):319–328. https://doi.org/10.1111/pbi.12336

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19:143–157. https://doi.org/10.1038/nrm.2017.104

    Article  CAS  PubMed  Google Scholar 

  5. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46. https://doi.org/10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 17(2–3):135–143. https://doi.org/10.1007/s10142-016-0524-x

    Article  CAS  PubMed  Google Scholar 

  7. Cai L, Chang H, Fang Y, Li G (2016) A comprehensive characterization of the function of LincRNAs in transcriptional regulation through long-range chromatin interactions. Sci Rep 6:36572. https://doi.org/10.1038/srep36572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding X, Zhu L, Ji T, Zhang X, Wang F, Gan S, Zhao M, Yang H (2014) Long intergenic non-coding RNAs (LincRNAs) identified by RNA-seq in breast cancer. PLoS One 9(8):e103270. https://doi.org/10.1371/journal.pone.0103270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan G, Liu K, Kang J, Xu K, Zhang Y, Hu L, Zhang J, Li C (2015) Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front Plant Sci 6:428. https://doi.org/10.3389/fpls.2015.00428

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zuluaga AP, Vega-Arreguin JC, Fei Z, Matas AJ, Patev S, Fry WE, Rose JK (2016) Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. Mol Plant Pathol 17(1):42–54. https://doi.org/10.1111/mpp.12260

    Article  CAS  PubMed  Google Scholar 

  11. Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071. https://doi.org/10.1093/bioinformatics/btt107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496. https://doi.org/10.1093/mp/ssu044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education Tier 1 research grant R-154-000-A34-114 through the National University of Singapore (NUS) and NUS High School of Mathematics and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sek-Man Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Gao, R., Liu, P., Irwanto, N., Loh, D.R., Wong, SM. (2019). Discovery, Identification, and Functional Characterization of Plant Long Intergenic Noncoding RNAs After Virus Infection. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics