Skip to main content

Expression Pattern of Plant miRNAs by Classical Transcriptional Fusion Constructs

  • Protocol
  • First Online:
  • 1681 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

Abstract

microRNAs are noncoding RNAs of 20–24 nucleotides (nt) in length that act as repressors of genes and are important in key developmental processes in the entire life cycle of plants. To determine the function of a microRNA, the first step is to resolve its expression pattern; this can be achieved by in situ hybridization, RNA blot assays, or quantitative PCR. However, the study of the expression of a MIR gene is straightforward with the use of reporter proteins such as β-D-glucuronidase (GUS), GFP, or mCherry. To do this, it is necessary to clone the promoter region of the MIR gene and place it upstream of the reporter gene; in this way the activity of the promoter will be a direct reflection of the expression of the MIR gene. Here, we indicate step by step how to make transcriptional fusion constructs from the cloning of a promoter region of a MIR gene fused to the classical reporter proteins GUS and mCherry, the latter with codon optimization for better expression in Arabidopsis thaliana. This method is particularly useful to dissect the promoter region of a MIR gene and to find its expression pattern in a tissue and developmental specific manner.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  Google Scholar 

  2. Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21:790–797

    Article  CAS  Google Scholar 

  3. Zhao Y, Wang F, Juan L (2015) microRNA promoter identification in arabidopsis using multiple histone markers. Biomed Res Int 2015:861402

    PubMed  PubMed Central  Google Scholar 

  4. Zhao X, Zhang H, Li L (2013) Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 101:187–194. https://doi.org/10.1016/j.ygeno.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Megraw M, Hatzigeorgiou AG (2010) MicroRNA promoter analysis. Methods Mol Biol 592:149–161

    Article  CAS  Google Scholar 

  6. Megraw M, Cumbie JS, Ivanchenko MG, Filichkin SA (2016) Small genetic circuits and microRNAs: big players in polymerase II transcriptional control in plants. Plant Cell 28:286–303

    Article  CAS  Google Scholar 

  7. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  Google Scholar 

  8. Cui J, You C, Chen X (2017) The evolution of microRNAs in plants. Curr Opin Plant Biol 35:61–67

    Article  CAS  Google Scholar 

  9. Li L, Yi H, Xue M, Yi M (2017) miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana. Ecotoxicology 26:1181–1187

    Article  CAS  Google Scholar 

  10. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  Google Scholar 

  11. Chavez Montes RA, de Fatima Rosas-Cardenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722

    Article  Google Scholar 

  12. Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  CAS  Google Scholar 

  13. Duran-Figueroa N, Vielle-Calzada JP (2010) ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. Plant Signal Behav 5:1476–1479

    Article  CAS  Google Scholar 

  14. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3:e37

    Article  Google Scholar 

  15. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  Google Scholar 

  16. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SIP-IPN 20182227 support research in the laboratory of NVDF. ATA is a PhD student, and KASE, ARR, and MIGJ are Master’s student; all have a scholarship by CONACyT-Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé V. Durán-Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tovar-Aguilar, A. et al. (2019). Expression Pattern of Plant miRNAs by Classical Transcriptional Fusion Constructs. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics