Skip to main content

Mass Spectrometry-Based Profiling of Metabolites in Human Biofluids

  • Protocol
  • First Online:
Cancer Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

  • 4023 Accesses

Abstract

Cancer poses a daunting challenge to researchers and clinicians alike. Early diagnosis, accurate prognosis, and prediction of therapeutic response remain elusive in most types of cancer. In addition, lacunae in our understanding of cancer biology continue to hinder advancement of therapeutic strategies. Metabolic reprogramming has been identified as integral to pathogenesis and progression of the disease. Consequently, analysis of biofluid metabolome has emerged as a promising approach to further our understanding of disease biology as well as to identify cancer biomarkers. However, unbiased identification of robust and meaningful differences in metabolic signatures remains a non-trivial task. This chapter describes a generalized strategy for global metabolic profiling of human biofluids using ultra-performance liquid chromatography (UPLC) and mass spectrometry, which together offer a sensitive, high-throughput, and versatile platform. A step-by-step protocol for performing untargeted metabolic profiling of urine and serum (or plasma), using hydrophilic interaction liquid chromatography (HILIC) or reverse-phase (RP) chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) to multivariate data analysis and identification of metabolites of interest has been detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pavlova NN, Thompson CB The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707. https://doi.org/10.1016/j.cell.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  5. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. https://doi.org/10.1073/pnas.0709747104

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johnson C, Warmoes MO, Shen X, Locasale JW Epigenetics and cancer metabolism. Cancer Lett 356(2 Pt A):309–314. https://doi.org/10.1016/j.canlet.2013.09.043

    Article  CAS  PubMed  Google Scholar 

  7. Kinnaird A, Zhao S, Wellen KE, Michelakis ED Metabolic control of epigenetics in cancer. Nat Rev Cancer 16(11):694–707. https://doi.org/10.1038/nrc.2016.82

    Article  CAS  PubMed  Google Scholar 

  8. Ma S, Jiang B, Deng W, Gu ZK, Wu FZ, Li T, Xia Y, Yang H, Ye D, Xiong Y, Guan KL D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget 6(11):8606–8620. https://doi.org/10.18632/oncotarget.3330

  9. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerins MJ, Vashisht AA, Liang BX, Duckworth SJ, Praslicka BJ, Wohlschlegel JA, Ooi A Fumarate mediates a chronic proliferative signal in fumarate hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol Cell Biol 37(11). pii: e00079-17). https://doi.org/10.1128/MCB.00079-17

  11. Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa AS, Gaude E, Drubbel AV, Theobald SJ, Abbo SR, Tran MG, Rajeeve V, Cardaci S, Foster S, Yun H, Cutillas P, Warren A, Gnanapragasam V, Gottlieb E, Franze K, Huntly B, Maher ER, Maxwell PH, Saez-Rodriguez J, Frezza C Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(7621):544–547. https://doi.org/10.1038/nature19353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85. https://doi.org/10.1016/j.ccr.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  13. Yang M, Pollard PJ Succinate: a new epigenetic hacker. Cancer Cell 23(6):709–711. https://doi.org/10.1016/j.ccr.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  14. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361. https://doi.org/10.1021/pr8006232

    Article  CAS  PubMed  Google Scholar 

  15. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66(22):10795–10804. https://doi.org/10.1158/0008-5472.CAN-06-0755

    Article  CAS  PubMed  Google Scholar 

  16. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925. https://doi.org/10.1158/0008-5472.CAN-08-4806

    Article  CAS  PubMed  Google Scholar 

  17. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 9(1):319–332. https://doi.org/10.1021/pr9006574

    Article  CAS  PubMed  Google Scholar 

  18. Roig B, Rodriguez-Balada M, Samino S, Lam EW, Guaita-Esteruelas S, Gomes AR, Correig X, Borras J, Yanes O, Guma J Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci Rep 7(1):17831. https://doi.org/10.1038/s41598-017-17897-8

  19. Jove M, Collado R, Quiles JL, Ramirez-Tortosa MC, Sol J, Ruiz-Sanjuan M, Fernandez M, de la Torre Cabrera C, Ramirez-Tortosa C, Granados-Principal S, Sanchez-Rovira P, Pamplona R A plasma metabolomic signature discloses human breast cancer. Oncotarget 8(12):19522–19533. https://doi.org/10.18632/oncotarget.14521

  20. Yonezawa K, Nishiumi S, Kitamoto-Matsuda J, Fujita T, Morimoto K, Yamashita D, Saito M, Otsuki N, Irino Y, Shinohara M, Yoshida M Nibu K Serum and tissue metabolomics of head and neck cancer. Cancer Genomics Proteomics 10(5):233–238

    Google Scholar 

  21. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 7(7):e40459. https://doi.org/10.1371/journal.pone.0040459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG Serum metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry. Sci Rep 7(1):1715. https://doi.org/10.1038/s41598-017-01924-9

  23. Farshidfar F, Weljie AM, Kopciuk K, Buie WD, Maclean A, Dixon E, Sutherland FR, Molckovsky A, Vogel HJ, Bathe OF Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med 4 (5):42. doi:https://doi.org/10.1186/gm341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GA, Owusu-Sarfo K, Ballas RA, Raftery D Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70(21):8309–8318. https://doi.org/10.1158/0008-5472.CAN-10-1319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ganti S, Weiss RH Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol 29(5):551–557. https://doi.org/10.1016/j.urolonc.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  26. Haznadar M, Cai Q, Krausz KW, Bowman ED, Margono E, Noro R, Thompson MD, Mathe EA, Munro HM, Steinwandel MD, Gonzalez FJ, Blot WJ, Harris CC Urinary metabolite risk biomarkers of lung cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 25(6):978–986. https://doi.org/10.1158/1055-9965.EPI-15-1191

    Article  CAS  Google Scholar 

  27. Kind T, Tolstikov V, Fiehn O, Weiss RH (2007) A comprehensive urinary metabolomic approach for identifying kidney cancerr. Anal Biochem 363(2):185–195. https://doi.org/10.1016/j.ab.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  28. Mathe EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED, Shields PG, Idle JR, Smith PB, Anami K, Kazandjian DG, Hatzakis E, Gonzalez FJ, Harris CC Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res 74(12):3259–3270. https://doi.org/10.1158/0008-5472.CAN-14-0109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Patel D, Thompson MD, Manna SK, Krausz KW, Zhang L, Nilubol N, Gonzalez FJ, Kebebew E Unique and novel urinary metabolomic features in malignant versus benign adrenal neoplasms. Clin Cancer Res 23(17):5302–5310. https://doi.org/10.1158/1078-0432.CCR-16-3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914. https://doi.org/10.1038/nature07762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, Ota S, Hiwatari K, Enomoto A, Soga T, Tomita M, Iino M Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 6:31520. https://doi.org/10.1038/srep31520

  32. Xu X, Cheng S, Ding C, Lv Z, Chen D, Wu J, Zheng S Identification of bile biomarkers of biliary tract cancer through a liquid chromatography/mass spectrometry-based metabolomic method. Mol Med Rep 11(3):2191–2198. https://doi.org/10.3892/mmr.2014.2973

    Article  PubMed  Google Scholar 

  33. Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics 11(6):M111.014688. https://doi.org/10.1074/mcp.M111.014688

    Article  Google Scholar 

  34. Armitage EG, Barbas C Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11. https://doi.org/10.1016/j.jpba.2013.08.041

    Article  CAS  PubMed  Google Scholar 

  35. Kim YS, Maruvada P, Milner JA (2008) Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol 4(1):93–102. https://doi.org/10.2217/14796694.4.1.93

    Article  CAS  PubMed  Google Scholar 

  36. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234. https://doi.org/10.1016/j.ccr.2010.01.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, Roylance RR, Olpin S, Bevan S, Barker K, Hearle N, Houlston RS, Kiuru M, Lehtonen R, Karhu A, Vilkki S, Laiho P, Eklund C, Vierimaa O, Aittomaki K, Hietala M, Sistonen P, Paetau A, Salovaara R, Herva R, Launonen V, Aaltonen LA (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30(4):406–410. https://doi.org/10.1038/ng849

    Article  CAS  PubMed  Google Scholar 

  38. Manna SK, Tanaka N, Krausz KW, Haznadar M, Xue X, Matsubara T, Bowman ED, Fearon ER, Harris CC, Shah YM, Gonzalez FJ Biomarkers of coordinate metabolic reprogramming in colorectal tumors in mice and humans. Gastroenterology 146(5):1313–1324. https://doi.org/10.1053/j.gastro.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  39. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30(9):826–828. https://doi.org/10.1038/nbt.2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  PubMed Central  Google Scholar 

  41. Suhre K, Schmitt-Kopplin P (2008) MassTRIX: mass translator into pathways. Nucleic Acids Res 36(Web Server):W481–W484. https://doi.org/10.1093/nar/gkn194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xia J, Wishart DS Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14.10.11–14.10.91. https://doi.org/10.1002/cpbi.11

    Article  PubMed  Google Scholar 

  43. Agustsson T, Ryden M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67(11):5531–5537. https://doi.org/10.1158/0008-5472.CAN-06-4585

    Article  CAS  PubMed  Google Scholar 

  44. Arner P, Langin D Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab 25(5):255–262. https://doi.org/10.1016/j.tem.2014.03.002

    Article  CAS  Google Scholar 

  45. Ellis LD, Westerman MP (1965) Autoimmune hemolytic anemia and cancer. JAMA 193:962–964

    Article  CAS  PubMed  Google Scholar 

  46. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78(13):4281–4290. https://doi.org/10.1021/ac051632c

    Article  CAS  PubMed  Google Scholar 

  47. Matsubara T, Tanaka N, Krausz KW, Manna SK, Kang DW, Anderson ER, Luecke H, Patterson AD, Shah YM, Gonzalez FJ Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metab 16(5):634–644. https://doi.org/10.1016/j.cmet.2012.10.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to sincerely acknowledge the contribution of Mr. Kristopher W. Krausz in developing methods for UPLC-ESIMS analysis and Dr. Frank J. Gonzalez (Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, USA) for his encouragement and support. This work was supported by Saha Institute of Nuclear Physics, Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kanti Manna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakraborty, T., Manna, S.K. (2019). Mass Spectrometry-Based Profiling of Metabolites in Human Biofluids. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics