Skip to main content

Metabolic Labeling of Cultured Mammalian Cells for Stable Isotope-Resolved Metabolomics: Practical Aspects of Tissue Culture and Sample Extraction

  • Protocol
  • First Online:
Cancer Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

Abstract

Stable isotope-resolved metabolomics (SIRM) methods are used increasingly by cancer researchers to probe metabolic pathways and identify vulnerabilities in cancer cells. Analytical and computational advances are being made constantly, but tissue culture and sample extraction procedures are often variable and not elaborated in the literature. This chapter discusses basic aspects of tissue culture practices as they relate to the use of stable isotope tracers and provides a detailed metabolic labeling and metabolite extraction procedure designed to maximize the amount of information that can be obtained from a single tracer experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane AN, Higashi RM, Fan TW (2016) Preclinical models for interrogating drug action in human cancers using stable isotope resolved metabolomics (SIRM). Metabolomics 12(7). https://doi.org/10.1007/s11306-016-1065-y

  2. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks OD, Malloy C, Metallo CM, Meuillet EJ, Munger J, Noh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201. https://doi.org/10.1016/j.copbio.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mackay GM, Zheng L, van den Broek NJ, Gottlieb E (2015) Analysis of cell metabolism using LC-MS and isotope tracers. Methods Enzymol 561:171–196. https://doi.org/10.1016/bs.mie.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  4. Sellers K, Fox MP, Bousamra M 2nd, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TW (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest 125(2):687–698. https://doi.org/10.1172/JCI72873

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, Wodzak M, Klimko C, McMillan E, Butt Y, Ni M, Oliver D, Torrealba J, Malloy CR, Kernstine K, Lenkinski RE, DeBerardinis RJ (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694. https://doi.org/10.1016/j.cell.2015.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, White E, Rabinowitz JD (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551(7678):115–118. https://doi.org/10.1038/nature24057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun RC, Fan TW, Deng P, Higashi RM, Lane AN, Le AT, Scott TL, Sun Q, Warmoes MO, Yang Y (2017) Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing. Nat Commun 8(1):1646. https://doi.org/10.1038/s41467-017-01518-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–371 e359. https://doi.org/10.1016/j.cell.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O'Brien JP, Pierce KA, Gui DY, Sullivan LB, Wasylenko TM, Subbaraj L, Chin CR, Stephanopolous G, Mott BT, Jacks T, Clish CB, Vander Heiden MG (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung Cancer. Cell Metab 23(3):517–528. https://doi.org/10.1016/j.cmet.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G (2016) Metabolic requirements for cancer cell proliferation. Cancer Metab 4:16. https://doi.org/10.1186/s40170-016-0156-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim J, Hu Z, Cai L, Li K, Choi E, Faubert B, Bezwada D, Rodriguez-Canales J, Villalobos P, Lin YF, Ni M, Huffman KE, Girard L, Byers LA, Unsal-Kacmaz K, Pena CG, Heymach JV, Wauters E, Vansteenkiste J, Castrillon DH, Chen BPC, Wistuba I, Lambrechts D, Xu J, Minna JD, DeBerardinis RJ (2017) CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546(7656):168–172. https://doi.org/10.1038/nature22359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lane AN, Tan J, Wang Y, Yan J, Higashi RM, Fan TW (2017) Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics. Metab Eng 43(Pt B):125–136. https://doi.org/10.1016/j.ymben.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Shah S, Fan J, Park JO, Wellen KE, Rabinowitz JD (2016) Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat Chem Biol 12(5):345–352. https://doi.org/10.1038/nchembio.2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TWM, Linehan M, Rouault TA (2018) Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 293:8297. https://doi.org/10.1074/jbc.RA118.001885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan TW, Lane AN (2011) NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 49(3–4):267–280. https://doi.org/10.1007/s10858-011-9484-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higashi RM, Fan TW, Lorkiewicz PK, Moseley HN, Lane AN (2014) Stable isotope-labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 1198:147–167. https://doi.org/10.1007/978-1-4939-1258-2_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jang C, Chen L, Rabinowitz JD (2018) Metabolomics and isotope tracing. Cell 173(4):822–837. https://doi.org/10.1016/j.cell.2018.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruntz RC, Lane AN, Higashi RM, Fan TW (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292(28):11601–11609. https://doi.org/10.1074/jbc.R117.776054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan TW-M (2012) The handbook of metabolomics. Springer, New York

    Book  Google Scholar 

  20. Lane AN, Fan TW, Xie Z, Moseley HN, Higashi RM (2009) Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal Chim Acta 651(2):201–208. https://doi.org/10.1016/j.aca.2009.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lane AN, Arumugam S, Lorkiewicz PK, Higashi RM, Laulhe S, Nantz MH, Moseley HN, Fan TW (2015) Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N nuclear magnetic resonance. Magn Reson Chem 53(5):337–343. https://doi.org/10.1002/mrc.4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Fan TW, Lane AN, Higashi RM (2017) Chloroformate derivatization for tracing the fate of amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM). Anal Chim Acta 976:63–73. https://doi.org/10.1016/j.aca.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M (1998) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Phys 274(5 Pt 1):E843–E851

    CAS  Google Scholar 

  24. Saxena N, Maio N, Crooks DR, Ricketts CJ, Yang Y, Wei MH, Fan TW, Lane AN, Sourbier C, Singh A, Killian JK, Meltzer PS, Vocke CD, Rouault TA, Linehan WM (2016) SDHB-deficient cancers: the role of mutations that impair Iron sulfur cluster delivery. J Natl Cancer Inst 108(1):djv287. https://doi.org/10.1093/jnci/djv287

    Article  CAS  Google Scholar 

  25. Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55(2):253–263. https://doi.org/10.1016/j.molcel.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moseley HN, Lane AN, Belshoff AC, Higashi RM, Fan TW (2011) A novel deconvolution method for modeling UDP-N-acetyl-d-glucosamine biosynthetic pathways based on (13)C mass isotopologue profiles under non-steady-state conditions. BMC Biol 9:37. https://doi.org/10.1186/1741-7007-9-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moseley HN (2010) Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics 11:139. https://doi.org/10.1186/1471-2105-11-139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freshney RI (2005) Culture of animal cells: a manual of basic techniques, 5th edn. John Wiley & Sons, Inc., Hoboken, NJ

    Book  Google Scholar 

  29. Lane AN, Fan TW, Bousamra M 2nd, Higashi RM, Yan J, Miller DM (2011) Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. OMICS 15(3):173–182. https://doi.org/10.1089/omi.2010.0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. experimental observations. Biotechnol Bioeng 55(2):305–316. https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  31. Zhang GF, Sadhukhan S, Tochtrop GP, Brunengraber H (2011) Metabolomics, pathway regulation, and pathway discovery. J Biol Chem 286(27):23631–23635. https://doi.org/10.1074/jbc.R110.171405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vasilakou E, Machado D, Theorell A, Rocha I, Noh K, Oldiges M, Wahl SA (2016) Current state and challenges for dynamic metabolic modeling. Curr Opin Microbiol 33:97–104. https://doi.org/10.1016/j.mib.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Cantor JR, Abu-Remaileh M, Kanarek N, Freinkman E, Gao X, Louissaint A Jr, Lewis CA, Sabatini DM (2017) Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169(2):258–272 e217. https://doi.org/10.1016/j.cell.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS One 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heeneman S, Deutz NE, Buurman WA (1993) The concentrations of glutamine and ammonia in commercially available cell culture media. J Immunol Methods 166(1):85–91

    Article  CAS  PubMed  Google Scholar 

  36. Nikfarjam L, Farzaneh P (2012) Prevention and detection of mycoplasma contamination in cell culture. Cell J 13(4):203–212

    PubMed  Google Scholar 

  37. Sanchez JF, Crooks DR, Lee CT, Schoen CJ, Amable R, Zeng X, Florival-Victor T, Morales N, Truckenmiller ME, Smith DR, Freed WJ (2006) GABAergic lineage differentiation of AF5 neural progenitor cells in vitro. Cell Tissue Res 324(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Ser Z, Locasale JW (2014) Development and quantitative evaluation of a high-resolution metabolomics technology. Anal Chem 86(4):2175–2184. https://doi.org/10.1021/ac403845u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sheikh KD, Khanna S, Byers SW, Fornace A Jr, Cheema AK (2011) Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech 22(1):1–4

    PubMed  PubMed Central  Google Scholar 

  40. Wu JT, Wu LH, Knight JA (1986) Stability of NADPH: effect of various factors on the kinetics of degradation. Clin Chem 32(2):314–319

    CAS  PubMed  Google Scholar 

  41. Nagana Gowda GA, Gowda YN, Raftery D (2015) Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy. Anal Chem 87(7):3800–3805. https://doi.org/10.1021/ac504435b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Purwaha P, Silva LP, Hawke DH, Weinstein JN, Lorenzi PL (2014) An artifact in LC-MS/MS measurement of glutamine and glutamic acid: in-source cyclization to pyroglutamic acid. Anal Chem 86(12):5633–5637. https://doi.org/10.1021/ac501451v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng P, Higashi RM, Lane AN, Bruntz RC, Sun RC, Ramakrishnam Raju MV, Nantz MH, Qi Z, Fan TW (2017) Quantitative profiling of carbonyl metabolites directly in crude biological extracts using chemoselective tagging and nanoESI-FTMS. Analyst 143(1):311–322. https://doi.org/10.1039/c7an01256j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimball E, Rabinowitz JD (2006) Identifying decomposition products in extracts of cellular metabolites. Anal Biochem 358(2):273–280. https://doi.org/10.1016/j.ab.2006.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79(16):6167–6173. https://doi.org/10.1021/ac070470c

    Article  CAS  PubMed  Google Scholar 

  46. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599. https://doi.org/10.1038/nchembio.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan TW, Warmoes MO, Sun Q, Song H, Turchan-Cholewo J, Martin JT, Mahan A, Higashi RM, Lane AN (2016) Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator beta-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud 2(4):a000893. https://doi.org/10.1101/mcs.a000893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lorkiewicz P, Higashi RM, Lane AN, Fan TW (2012) High information throughput analysis of nucleotides and their isotopically enriched isotopologues by direct-infusion FTICR-MS. Metabolomics 8(5):930–939. https://doi.org/10.1007/s11306-011-0388-y

    Article  CAS  PubMed  Google Scholar 

  49. Welshons WV, Wolf MF, Murphy CS, Jordan VC (1988) Estrogenic activity of phenol red. Mol Cell Endocrinol 57(3):169–178

    Article  CAS  PubMed  Google Scholar 

  50. Bindal RD, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA (1988) Lipophilic impurities, not phenolsulfonphthalein, account for the estrogenic activity in commercial preparations of phenol red. J Steroid Biochem 31(3):287–293

    Article  CAS  PubMed  Google Scholar 

  51. Villas-Bôas SG (2007) Metabolome analysis: an introduction. Wiley-Interscience series in mass spectrometry. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  52. Kelly AE, Ou HD, Withers R, Dotsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124(40):12013–12019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Cancer Institute, NIH, NIH 1U24DK097215-01A1, 1P01CA163223-01A1, and 3R01ES022191-04S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa W.-M. Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crooks, D.R., Fan, T.WM., Linehan, W.M. (2019). Metabolic Labeling of Cultured Mammalian Cells for Stable Isotope-Resolved Metabolomics: Practical Aspects of Tissue Culture and Sample Extraction. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics