Skip to main content

Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast

  • Protocol
  • First Online:
Book cover Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1923))

Abstract

Human hemoglobin is an essential protein, whose main function as an oxygen carrier is indispensable for life. Hemoglobin is a cofactor-containing protein with heme as prosthetic group. Same as in humans, heme is synthesized in many organisms in a complex pathway involving two cellular compartments (mitochondria and cytosol), which is tightly regulated. Red blood cells (erythrocytes) are specialized and adapted for production and transport of the hemoglobin molecules. In addition to oxygen binding, hemoglobin can participate in a variety of chemical reactions by its iron and heme and may become toxic when released from erythrocytes. Hemoglobin is a major target for the development of blood substitutes/oxygen carriers, and therefore its microbial production is attractive, as it may provide a cheap and reliable source of human hemoglobin. Significant efforts have been dedicated to this task for the last three decades. Moreover since the first generation of cell-free blood substitutes based on unmodified hemoglobin failed human trials, mutant forms became of great interest.

In this chapter we summarize the existing knowledge about human hemoglobin, challenges of its microbial production, and its improvement, with a particular focus upon yeast as production host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabhulkar S, Tian H, Wang X et al (2012) Engineered proteins: redox properties and their applications. Antioxid Redox Signal 17(12):1796–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lončar N, Fraaije MW (2015) Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 99(8):3351–3357

    Article  PubMed  CAS  Google Scholar 

  3. Bankar SB, Bule MV, Singhal RS et al (2009) Glucose oxidase – an overview. Biotechnol Adv 27(4):489–501

    Article  CAS  PubMed  Google Scholar 

  4. Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431

    Article  CAS  PubMed  Google Scholar 

  5. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. In: Neuberger A, Tatum EL (eds) Frontiers of biology, vol 21. North-Holland Publishing Company, Amsterdam, p 436

    Google Scholar 

  6. Messerschmidt A (2001) Handbook of metalloproteins. Wiley, Chichester

    Google Scholar 

  7. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  9. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

  10. Moraes CT, Diaz F, Barrientos A (2004) Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. Biochim Biophys Acta 1659(2–3):153–159

    Article  CAS  PubMed  Google Scholar 

  11. Berg JM, Tymoczko JL, Stryer L (eds) (2002) Biochemistry. W. H. Freeman, New York

    Google Scholar 

  12. Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 26(2):162–167

    Article  CAS  PubMed  Google Scholar 

  13. Bohr C, Hasselbalch K, Krogh A (1904) Concerning a biologically important relationship – the influence of the carbon dioxide content of blood on its oxygen binding. Skand Arch Physiol 16:402–412 [In German]

    Article  Google Scholar 

  14. Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351(16):1655–1665

    Article  CAS  PubMed  Google Scholar 

  15. Schaer DJ, Buehler PW (2013) Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med 3(6):a013433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Doherty DH, Doyle MP, Curry SR (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16(7):672–676

    Article  CAS  PubMed  Google Scholar 

  17. Olson JS, Foley EW, Rogge C et al (2004) No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36(6):685–697

    Article  CAS  PubMed  Google Scholar 

  18. Alayash AI, Patel RP, Cashon RE (2001) Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid Redox Signal 3(2):313–327

    Article  CAS  PubMed  Google Scholar 

  19. Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 4(2):259–270

    Article  CAS  PubMed  Google Scholar 

  20. Tsantes AE, Bonovas S, Travlou A et al (2006) Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid Redox Signal 8(7–8):1205–1216

    Article  CAS  PubMed  Google Scholar 

  21. Johnson RM, Ho YS, Yu DY et al (2010) The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med 48(4):519–525

    Article  CAS  PubMed  Google Scholar 

  22. Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187. https://doi.org/10.3389/fphys.2015.00187

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rochette J, Craig JE, Thein SL (1994) Fetal hemoglobin levels in adults. Blood Rev 8(4):213–224

    Article  CAS  PubMed  Google Scholar 

  24. Manca L, Masala B (2008) Disorders of the synthesis of human fetal hemoglobin. IUBMB Life 60(2):94–111

    Article  CAS  PubMed  Google Scholar 

  25. Steinberg MH, Rodgers GP (2015) HbA2: biology, clinical relevance and a possible target for ameliorating sickle cell disease. Br J Haematol 170(6):781–787

    Article  CAS  PubMed  Google Scholar 

  26. Peschle C, Mavilio F, Carè A et al (1985) Haemoglobin switching in human embryos: asynchrony of zeta-alpha and epsilon-gamma-globin switches in primitive and definite erythropoietic lineage. Nature 313(5999):235–238

    Article  CAS  PubMed  Google Scholar 

  27. Al-Mufti R, Hambley H, Farzaneh F et al (2000) Fetal and embryonic hemoglobins in erythroblasts of chromosomally normal and abnormal fetuses at 10–40 weeks of gestation. Haematologica 85(7):690–693

    CAS  PubMed  Google Scholar 

  28. He Z, Russell JE (2001) Expression, purification, and characterization of human hemoglobins Gower-1 (zeta(2)epsilon(2)), Gower-2 (alpha(2)epsilon(2)), and Portland-2 (zeta(2)beta(2)) assembled in complex transgenic-knockout mice. Blood 97(4):1099–1105

    Article  CAS  PubMed  Google Scholar 

  29. Wilber A, Nienhuis AW, Persons DA (2011) Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 117:3945–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2(12):a011627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Militello V, Vitrano E, Cupane A (1991) The effect of organic cosolvents on the oxygen affinity of fetal hemoglobin. Relevance of protein-solvent interactions to the functional properties. Biophys Chem 39(2):161–169

    Article  CAS  PubMed  Google Scholar 

  32. Dumoulin A, Manning LR, Jenkins WT et al (1997) Exchange of subunit interfaces between recombinant adult and fetal hemoglobins. Evidence for a functional inter-relationship among regions of the tetramer. J Biol Chem 272(50):31326–31332

    Article  CAS  PubMed  Google Scholar 

  33. Chakane S, Matos T, Kettisen K et al (2017) Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein. Redox Biol 12:114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ratanasopa K, Strader MB, Alayash AI et al (2015) Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Front Physiol 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lettre G, Bauer DE (2016) Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet 387(10037):2554–2564

    Article  CAS  PubMed  Google Scholar 

  36. Saki N, Abroun S, Soleimani M et al (2016) MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J 17(4):583–592

    PubMed  PubMed Central  Google Scholar 

  37. Sripichai O, Fucharoen S (2016) Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol 9(12):1129–1137

    Article  CAS  PubMed  Google Scholar 

  38. Habara AH, Shaikho EM, Steinberg MH (2017) Fetal hemoglobin in sickle cell anemia: the Arab-Indian haplotype and new therapeutic agents. Am J Hematol 92(11):1233–1242. https://doi.org/10.1002/ajh.24872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tobian AA, Heddle NM, Wiegmann TL et al (2016) Red blood cell transfusion: 2016 clinical practice guidelines from AABB. Transfusion 56(10):2627–2630

    Article  PubMed  Google Scholar 

  40. Forbes JM, Anderson MD, Anderson GF et al (1991) Blood transfusion costs: a multicenter study. Transfusion 31(4):318–323

    Article  CAS  PubMed  Google Scholar 

  41. Moradi S, Jahanian-Najafabadi A, Roudkenar MH (2016) Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord 9:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alayash AI (2014) Blood substitutes: why haven’t we been more successful? Trends Biotechnol 32(4):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Graves PE, Henderson DP, Horstman MJ et al (2008) Enhancing stability and expression of recombinant human hemoglobin in E. coli: progress in the development of a recombinant HBOC source. Biochim Biophys Acta 1784(10):1471–1479

    Article  CAS  PubMed  Google Scholar 

  44. Martínez JL, Liu L, Petranovic D et al (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23(6):965–971

    Article  PubMed  CAS  Google Scholar 

  45. Jullesson D, David F, Pfleger B et al (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395–1402

    Article  CAS  PubMed  Google Scholar 

  46. Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10(7):939–949

    Article  CAS  PubMed  Google Scholar 

  47. Nagai K, Perutz MF, Poyart C (1985) Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci U S A 82(21):7252–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagenbach M, O’Rourke K, Vitez L et al (1991) Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology (N Y) 9(1):57–61

    CAS  Google Scholar 

  49. Behringer RR, Ryan TM, Reilly MP et al (1989) Synthesis of functional human hemoglobin in transgenic mice. Science 245(4921):971–973

    Article  CAS  PubMed  Google Scholar 

  50. Swanson ME, Martin MJ, O’Donnell JK et al (1992) Production of functional human hemoglobin in transgenic swine. Biotechnology (N Y) 10(5):557–559

    CAS  Google Scholar 

  51. Dieryck W, Pagnier J, Poyart C et al (1997) Human haemoglobin from transgenic tobacco. Nature 386(6620):29–30

    Article  CAS  PubMed  Google Scholar 

  52. Komar AA, Kommer A, Krasheninnikov IA et al (1993) Cotranslational heme binding to nascent globin chains. FEBS Lett 326(1–3):261–263

    Article  CAS  PubMed  Google Scholar 

  53. Yip YK, Waks M, Beychok S (1977) Reconstitution of native human hemoglobin from separated globin chains and alloplex intermediates. Proc Natl Acad Sci U S A 74(1):64–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoffman SJ, Looker DL, Roehrich JM et al (1990) Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A 87(21):8521–8525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Komar AA, Kommer A, Krasheninnikov IA et al (1997) Cotranslational folding of globin. J Biol Chem 272(16):10646–10651

    Article  CAS  PubMed  Google Scholar 

  56. Hernan RA, Hui HL, Andracki ME et al (1992) Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry 31(36):8619–8628

    Article  CAS  PubMed  Google Scholar 

  57. Kavanaugh JS, Rogers PH, Arnone A (1992) High-resolution X-ray study of deoxy recombinant human hemoglobins synthesized from beta-globins having mutated amino termini. Biochemistry 31(36):8640–8647

    Article  CAS  PubMed  Google Scholar 

  58. Shen TJ, Ho NT, Simplaceanu V et al (1993) Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A 90(17):8108–8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walsh G (2002) Proteins: biochemistry and biotechnology. Wiley, Chichester

    Google Scholar 

  60. Looker D, Abbott-Brown D, Cozart P et al (1992) A human recombinant haemoglobin designed for use as a blood substitute. Nature 356(6366):258–260

    Article  CAS  PubMed  Google Scholar 

  61. Weickert MJ, Pagratis M, Glascock CB et al (1999) A mutation that improves soluble recombinant hemoglobin accumulation in Escherichia coli in heme excess. Appl Environ Microbiol 65(2):640–647

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fronticelli C, Arosio D, Bobofchak KM et al (2001) Molecular engineering of a polymer of tetrameric hemoglobins. Proteins 44(3):212–222

    Article  CAS  PubMed  Google Scholar 

  63. Feng L, Gell DA, Zhou S et al (2004) Molecular mechanism of AHSP-mediated stabilization of alpha-hemoglobin. Cell 119(5):629–640

    Article  CAS  PubMed  Google Scholar 

  64. Gell D, Kong Y, Eaton SA et al (2002) Biophysical characterization of the alpha-globin binding protein alpha-hemoglobin stabilizing protein. J Biol Chem 277(43):40602–40609

    Article  CAS  PubMed  Google Scholar 

  65. Domingues-Hamdi E, Vasseur C, Fournier JB et al (2014) Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule. PLoS One 9(11):e111395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vasseur-Godbillon C, Hamdane D, Marden MC et al (2006) High-yield expression in Escherichia coli of soluble human alpha-hemoglobin complexed with its molecular chaperone. Protein Eng Des Sel 19(3):91–97

    Article  CAS  PubMed  Google Scholar 

  67. Ratanasopa K, Cedervall T, Bülow L (2016) Possibilities of using fetal hemoglobin as a platform for producing hemoglobin-based oxygen carriers (HBOCs). Adv Exp Med Biol 876:445–453

    Article  CAS  PubMed  Google Scholar 

  68. Adachi K, Konitzer P, Lai CH et al (1992) Oxygen binding and other physical properties of human hemoglobin made in yeast. Protein Eng 5(8):807–810

    Article  CAS  PubMed  Google Scholar 

  69. Coghlan D, Jones G, Denton KA et al (1992) Structural and functional characterisation of recombinant human haemoglobin A expressed in Saccharomyces cerevisiae. Eur J Biochem 207(3):931–936

    Article  CAS  PubMed  Google Scholar 

  70. Martin de Llano JJ, Schneewind O, Stetler G et al (1993) Recombinant human sickle hemoglobin expressed in yeast. Proc Natl Acad Sci U S A 90(3):918–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ogden JE, Harris R, Wilson MT (1994) Production of recombinant human hemoglobin A in Saccharomyces cerevisiae. Methods Enzymol 231:374–390

    Article  CAS  PubMed  Google Scholar 

  72. Liu L, Martínez JL, Liu Z et al (2014) Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng 21:9–16

    Article  CAS  PubMed  Google Scholar 

  73. Martínez JL, Liu L, Petranovic D et al (2015) Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae. Biotechnol Bioeng 112(1):181–188

    Article  PubMed  CAS  Google Scholar 

  74. Zhang L, Hach A (1999) Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 56(5–6):415–426

    Article  CAS  PubMed  Google Scholar 

  75. Hoffman M, Góra M, Rytka J (2003) Identification of rate-limiting steps in yeast heme biosynthesis. Biochem Biophys Res Commun 310(4):1247–1253

    Article  CAS  PubMed  Google Scholar 

  76. Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30(4):590–595

    Article  CAS  PubMed  Google Scholar 

  77. Pfeifer K, Kim KS, Kogan S et al (1989) Functional dissection and sequence of yeast HAP1 activator. Cell 56(2):291–301

    Article  CAS  PubMed  Google Scholar 

  78. Kwast KE, Burke PV, Poyton RO (1998) Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol 201(Pt 8):1177–1195

    CAS  PubMed  Google Scholar 

  79. Ter Linde JJ, Steensma HY (2002) A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19(10):825–840

    Article  PubMed  CAS  Google Scholar 

  80. Keng T (1992) HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol 12(6):2616–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guarente L, Mason T (1983) Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32(4):1279–1286

    Article  CAS  PubMed  Google Scholar 

  82. Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136(3):813–817

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu J, Jiang J, Fang Z et al (2010) Enhanced expression of heterologous inulinase in Kluyveromyces lactis by disruption of hap1 gene. Biotechnol Lett 32(4):507–512

    Article  CAS  PubMed  Google Scholar 

  84. Sassa S (1996) Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J Exp Med 143(2):305–315

    Article  Google Scholar 

  85. Michener JK, Nielsen J, Smolke CD (2012) Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases. Proc Natl Acad Sci U S A 109(47):19504–19509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Petranovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishchuk, O.P., Martínez, J.L., Petranovic, D. (2019). Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast. In: Gasser, B., Mattanovich, D. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 1923. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9024-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9024-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9023-8

  • Online ISBN: 978-1-4939-9024-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics