Skip to main content

Purification of Functional F-ATP Synthase from Blue Native PAGE

  • Protocol
  • First Online:
Calcium Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1925))

Abstract

In the presence of Ca2+, F-ATP synthase preparations eluted from Blue Native gels generate electrophysiological currents that are typical of an inner mitochondrial membrane mega-channel, the permeability transition pore. Here we describe an experimental protocol for purification of F-ATP synthase that allows to maintain the enzyme assembly and activity that are essential for catalysis and channel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16

    Article  CAS  PubMed Central  Google Scholar 

  2. Rees DM, Leslie AGW, Walker JE (2009) The structure of the membrane extrinsic region of bovine ATP synthase. Proc Natl Acad Sci U S A 106:21597–21601

    Article  CAS  PubMed Central  Google Scholar 

  3. Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieffniko N, Rubinstein JL (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. elife 4:1–15

    Google Scholar 

  4. Hiroyuki N, Ryohei Y, Yoshida Masasuke KK (1997) Noji 1997 pdf. Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  CAS  PubMed Central  Google Scholar 

  5. Senior AE (2007) ATP synthase: motoring to the finish line. Cell 130:220–221

    Article  CAS  PubMed Central  Google Scholar 

  6. Kühlbrandt W, Davies KM (2016) Rotary ATPases: a new twist to an ancient machine. Trends Biochem Sci 41:106–116

    Article  PubMed Central  Google Scholar 

  7. Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160

    Article  CAS  PubMed Central  Google Scholar 

  8. Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kuhlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci 108:14121–14126

    Article  CAS  PubMed Central  Google Scholar 

  9. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  PubMed Central  Google Scholar 

  10. Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, Zoratti M, Szabò I, Bernardi P (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289:15980–15985

    Article  CAS  PubMed Central  Google Scholar 

  11. Von Stockum S, Giorgio V, Trevisan E, Lippe G, Glick GD, Forte MA, Da-Rè C, Checchetto V, Mazzotta G, Costa R, Szabò I, Bernardi P (2015) F-ATPase of drosophila melanogaster forms 53-picosiemen (53-pS) channels responsible for mitochondrial Ca 2+-induced Ca2+ release. J Biol Chem 290:4537–4544

    Article  Google Scholar 

  12. Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155

    Article  PubMed Central  Google Scholar 

  13. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P (2018) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70:56–63

    Article  CAS  PubMed Central  Google Scholar 

  14. Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P (2017) Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 18:1065–1076

    Article  CAS  PubMed Central  Google Scholar 

  15. Wittig I, Schägger H (2005) Advantages and limitations of clear-native PAGE. Proteomics 5:4338–4346

    Article  CAS  PubMed Central  Google Scholar 

  16. Zerbetto E, Vergani LD-SF (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18:2059–2064

    Article  CAS  PubMed Central  Google Scholar 

  17. Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta Bioenerg 1757:1066–1072

    Article  CAS  Google Scholar 

  18. Meyer B, Wittig I, Trifilieff E, Karas M, Schägger H (2007) Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics 6:1690–1699

    Article  CAS  PubMed Central  Google Scholar 

  19. Giorgio V, Bisetto E, Franca R, Harris DA, Passamonti S, Lippe G (2010) The ectopic FOF1 ATP synthase of rat liver is modulated in acute cholestasis by the inhibitor protein IF1. J Bioenerg Biomembr 42:117–123

    Article  CAS  Google Scholar 

  20. He J, Ford HC, Carroll J, Douglas C, Gonzales E, Ding S, Fearnley IM, Walker JE (2018) Assembly of the membrane domain of ATP synthase in human mitochondria. Proc Natl Acad Sci 115:2988–2993

    Article  CAS  PubMed Central  Google Scholar 

  21. Reisinger V, Eichacker LA (2008) Solubilization of membrane protein complexes for blue native PAGE. J Proteome 71:277–283

    Article  CAS  Google Scholar 

  22. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome: Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309

    Article  CAS  PubMed Central  Google Scholar 

  23. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Wagner R, Truscott KN (2003) Mitochondrial inner membrane by a twin-pore translocase. Science 229:1747–1751

    Article  Google Scholar 

  24. Schägger H, Cramer WA, Vonjagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    Article  PubMed Central  Google Scholar 

  25. Bisetto E, Di Pancrazio F, Simula MP, Mavelli ILG (2007) Mammalian ATPsynthase monomer versus dimer profiled by blue native PAGE and activity stain. Electrophoresis 28:3178–3185

    Article  CAS  PubMed Central  Google Scholar 

  26. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295

    Article  CAS  PubMed Central  Google Scholar 

  27. Yamada A, Yamamoto T, Yoshimura Y, Gouda S, Kawashima S, Yamazaki N, Yamashita K, Kataoka M, Nagata T, Terada H, Pfeiffer DR, Shinohara Y (2009) Ca2+−induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim Biophys Acta Bioenerg 1787:1486–1491

    Article  CAS  Google Scholar 

  28. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P (1996) Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel. JBC 271:2185–2196

    Article  CAS  Google Scholar 

  29. Chatzianastasiou A, Bibli S-I, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabó C, Papapetropoulos George Livanos AP (2016) Cardioprotection by H 2 S donors: nitric oxide-dependent and -independent mechanisms. J Pharmacol Exp Ther 358:431–440

    Article  CAS  PubMed Central  Google Scholar 

  30. Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank Paolo Bernardi (University of Padova), Giovanna Lippe (University of Udine), and Ildikò Szabò (University of Padova) for their helpful suggestions. This work was supported by AIRC grant MFAG 2017 20316 to V.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Giorgio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galber, C., Valente, G., von Stockum, S., Giorgio, V. (2019). Purification of Functional F-ATP Synthase from Blue Native PAGE. In: Raffaello, A., Vecellio Reane, D. (eds) Calcium Signalling. Methods in Molecular Biology, vol 1925. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9018-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9018-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9017-7

  • Online ISBN: 978-1-4939-9018-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics