Skip to main content

Quantitative Analysis of Tip Growth, Phototropic Responses, and Other Blue Light-Dependent Photoresponses of Vaucheria

  • Protocol
  • First Online:
Phototropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1924))

Abstract

The coenocytic tip-growing alga Vaucheria exhibits positive and negative phototropism, apical expansion, polarotropism, and branch induction from the illuminated region of the cell, all of which are caused by blue light. The bending response of Vaucheria is a blue light-mediated growth response. Differently from diffuse-growing cells or organs, the apical hemispherical dome of the Vaucheria cell is the site of not only maximum growth activity but also the site of blue light perception. Thence the phototropic response is initiated by the bulging mechanism: that is, a quick shift of the growth center to the adjacent subapical flank region. Since tip growth is driven by localized exocytosis, both phototropic bending and branch induction are considered to be closely related blue light-responses. Here I describe first how to prepare a highly useful culture medium for most freshwater algae, to establish unialgal and axenic culture of Vaucheria, and then describe several simple illumination systems using ordinary and/or inverted microscopes for the measurements of tip growth and for analyses of phototropism, polarotropism, and blue light-induced branching. Brief information is also included concerning the nature and function of aureochrome, the newly discovered, ochrophyte-specific blue light receptor. Aureochrome mediates blue light-induced branching, but its role in the phototropic response is still not elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92

    Article  CAS  Google Scholar 

  2. Cai G, Parotta L, Cresti M (2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57:63–78

    Article  Google Scholar 

  3. Kataoka H (1981) Expansion of Vaucheria cell apex caused by blue or red light. Plant Cell Physiol 22:583–595

    Google Scholar 

  4. Kataoka H (1975) Phototropism in Vaucheria geminata I. The action spectrum. Plant Cell Physiol 16:427–437

    Google Scholar 

  5. Kataoka H (1975) Phototropism in Vaucheria geminata II. The mechanism of bending and branching. Plant Cell Physiol 16:439–448

    Google Scholar 

  6. Kataoka H (1980) Phototropism: determination of an action spectrum in a tip-growing cell. In: Gantt E (ed) Handbook of phycological methods: developmental and cytological methods. Cambridge Univ Press, Cambridge, pp 205–218

    Google Scholar 

  7. Green PB, Erickson RO, Richmond PA (1970) On the physical basis of cell morphogenesis. Ann N Y Acad Sci 175:712–731

    Article  Google Scholar 

  8. Kataoka H (1987) The light growth response of Vaucheria. A conditio sine qua non of the phototropic response? Plant Cell Physiol 28:61–71

    Google Scholar 

  9. Kataoka H, Weisenseel MH (1988) Blue light promotes ionic current influx at the growing apex of Vaucheria terrestris. Planta 173:490–499

    Article  CAS  Google Scholar 

  10. Kataoka H (1982) Colchicine-induced expansion of Vaucheria cell apex. Alteration from isotropic to transversally anisotropic growth. Bot Mag Tokyo 95:317–330

    Article  CAS  Google Scholar 

  11. Kataoka H, Watanabe M (1993) Negative phototropism in Vaucheria terrestris regulated by calcium III. The role of calcium characterized by use of a high-power argon-ion laser as the source of unilateral blue light. Plant Cell Physiol 34:737–744

    Article  CAS  Google Scholar 

  12. Kataoka H (1977) Second positive and negative phototropism in Vaucheria geminata. Plant Cell Physiol 18:473–476

    Article  CAS  Google Scholar 

  13. Kataoka H (1988) Negative phototropism in Vaucheria terrestris regulated by calcium I. dependence on background blue light and external calcium concentration. Plant Cell Physiol 29:1323–1330

    CAS  Google Scholar 

  14. Kataoka H (1989) Phototropic inversion as regulated by external Ca-concentration. In: Tazawa M et al (eds) Plant water relations and growth under stress. Yamada Science Foundation, Osaka, Myu KK, Tokyo, pp 392–394

    Google Scholar 

  15. Kataoka H (1990) Negative phototropism in Vaucheria terrestris regulated by calcium II. Inhibition by Ca2+-channel blockers and mimesis by A23187. Plant Cell Physiol 31:933–940

    CAS  Google Scholar 

  16. Kataoka H, Watanabe M (1992) Ca2+ mediates the phototropic inversion of a tip-growing alga, Vaucheria,—a laser experiment. In: Masuda Y (ed) Plant cell walls as biopolymers with physiological functions. Yamada Science Foundation, Osaka, pp 149–151

    Google Scholar 

  17. Kataoka H, Takahashi F, Ootaki T (2000) Bimodal polarotropism of Vaucheria to polarized blue light: parallel polarotropism at high fluence rate corresponds to negative polarotropism. J Plant Res 113:1–10

    Article  Google Scholar 

  18. Takahashi F, Hishinuma T, Kataoka H (2001) Blue light-induced branching in Vaucheria. Requirement of nuclear accumulation in the irradiated region. Plant Cell Physiol 42:274–285

    Article  CAS  Google Scholar 

  19. Takahashi F, Yamagata D, Ishikawa M et al (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104:19625–19630

    Article  CAS  Google Scholar 

  20. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  Google Scholar 

  21. Huysman MJJ, Fortunato AE, Matthijs M et al (2013) AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornatum). Plant Cell 25:215–228

    Article  CAS  Google Scholar 

  22. Ishikawa M, Takahashi F, Nozaki H et al (2009) Distribution and phylogeny of the blue-light receptors aureochromes in eukaryotes. Planta 230:543–552

    Article  CAS  Google Scholar 

  23. Christensen T (1969) Vaucheria collections from Vaucher's region. Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter 16:36

    Google Scholar 

  24. Henschel D (1992) Vergleichende ökologische Untersuchungen zur Saltztoleranz der euryhalien Xanthophyceae Vaucheria dichotoma (L). Martius von geographisch unterschiedlichen Standorten. Dissertation to Dr grade, Univ Bremen

    Google Scholar 

  25. Åberg H, Fries L (1976) On cultivation of the alga Vaucheria dichotoma (Xanthophyceae) in axenic culture. Phycologia 15:133–141

    Article  Google Scholar 

  26. Henschel D, Kataoka H, Kirst GO (1991) Osmotic acclimation of the brackish water Xanthophyceae, Vaucheria dichotoma (L.) MARTIUS. Inorganic ion composition and amino acids. Bot Mag Tokyo 104:283–295

    Article  Google Scholar 

  27. Iseki M, Wada S (1995) Action spectrum in ultraviolet region for phototropism of Bryopsis rhizoid. Plant Cell Physiol 36:1033–1040

    Article  CAS  Google Scholar 

  28. Iseki M, Mizukami M, Wada S (1995) Positive phototropism in the thallus of Bryopsis plumosa. Plant Cell Physiol 36:971–976

    Article  CAS  Google Scholar 

  29. Iseki M, Mizukami M, Wada S (1995) Negative phototropism in the rhizoid of Bryopsis plumosa. Plant Cell Physiol 36:977–982

    Article  CAS  Google Scholar 

  30. Ishizawa K, Wada S (1979) Growth and phototropic bending in Boergesenia rhizoid. Plant Cell Physiol 20:973–982

    Google Scholar 

  31. Ishizawa K, Wada S (1979) Action spectrum of negative phototropism in Boergesenia forbesii. Plant Cell Physiol 20:983–987

    Google Scholar 

  32. Stein J (ed) (1973) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, London

    Google Scholar 

  33. Haupt W (1996) Plant movement. In: Salisbury FB (ed) units, symbols, and terminology for plant physiology. Oxford Univ Press, Oxford, pp 120–125

    Google Scholar 

  34. Buder J (1920) Neue phototropische Fundamentalversuche. Ber Dtsch Bot Ges 38:10–14

    Google Scholar 

  35. Kraml M (1994) Light direction and polarization. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 417–445

    Chapter  Google Scholar 

  36. Etzold H (1965) Der Polarotropisms und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta 64:254–280

    Article  CAS  Google Scholar 

  37. Wada M, Sugai M (1994) Photobiology of ferns. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht, pp 783–802

    Chapter  Google Scholar 

  38. Blaauw AH (1914) Licht und Wachstum I. Z Bot 6:641–703

    Google Scholar 

  39. Delbrück W, Reichardt W (1956) System analysis for the light growth reactions of Phycomyces. In: Rudnick D (ed) Cellular mechanisms in differentiation and growth. Princeton Univ Press, Princeton, pp 3–44

    Google Scholar 

  40. Rieth A (1980) Süßwasserflora von Mitteleuropa, Xanthophyceae im Mitteleuropa, Band 4, 2 Teil. Gustav Fischer, Stuttgart

    Google Scholar 

  41. Kataoka H (1977) Phototropic sensitivity in Vaucheria geminata regulated by 3′,5′-cyclic AMP. Plant Cell Physiol 18:431–440

    Article  CAS  Google Scholar 

  42. Kataoka H (1981) Phototropisms in lower green plants. In: Furuya M (ed) Light and movement in life. Kyoritsu-Shuppan, Tokyo, pp 147–176 (in Japanese)

    Google Scholar 

  43. Takahashi F, Yamaguchi K, Hishinuma T et al (2003) Mitosis and mitotic wave propagation in the coenocytic alga, Vaucheria terrestris sensu Goetz. J Plant Res 116:381–388

    Article  Google Scholar 

  44. Andersen RA, Bailey JC (2002) Phylogenetic analysis of 32 strains of Vaucheria (Xanthophyceae) using the rbcL gene and its two flanking spacer regions. J Phycol 38:583–592

    Article  CAS  Google Scholar 

  45. Guillard RRL (1973) Methods for microflagellates and nanoplankton. In: Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, Cambridge, pp 69–84

    Google Scholar 

  46. Page JZ (1973) Methods for coenocytic algae. In: Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge Univ Press, Cambridge, pp 105–126

    Google Scholar 

  47. Åberg H (1978) Light and branch formation in the alga, Vaucheria dichotoma (Xanthophyceae). Physiol Plant 44:224–230

    Article  Google Scholar 

  48. Hisatomi O, Takeuchi K, Zikihara K et al (2013) Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1. Plant Cell Physiol 54:93–106

    Article  CAS  Google Scholar 

  49. Hisatomi H, Nakatani Y, Takeuchi K et al (2014) Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J Biol Chem 289:17379–17391

    Article  CAS  Google Scholar 

  50. Toyooka T, Hisatomi O, Takahashi F et al (2011) Photoreactions of aureochrome-1. Biophys J 100:2801–2809

    Article  CAS  Google Scholar 

  51. Yamagishi T, Hishinuma T, Kataoka H (2003) Bicarbonate enhances synchronous division of the giant nuclei of sporophytes in Bryopsis plumosa. J Plant Res 116:295–300

    Article  Google Scholar 

  52. Yamagishi T, Hishinuma T, Kataoka H (2004) Novel sporophyte-like plants are regenerated from protoplasts fused between sporophytic and gametophytic protoplasts of Bryopsis plumosa. Planta 219:253–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kataoka, H. (2019). Quantitative Analysis of Tip Growth, Phototropic Responses, and Other Blue Light-Dependent Photoresponses of Vaucheria. In: Yamamoto, K. (eds) Phototropism. Methods in Molecular Biology, vol 1924. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9015-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9015-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9014-6

  • Online ISBN: 978-1-4939-9015-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics