Skip to main content

Embryological and Genetic Manipulation of Chick Development

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

The ability to combine embryological manipulations with gene function analysis in an amniote embryo makes the chick a valuable system for the vertebrate developmental biologist. This chapter describes methods for those unfamiliar with the chick system wishing to initiate experiments in their lab. After outlining methods to prepare chick embryos, protocols are provided for introducing beads or cells expressing secreted factors, and for culturing tissue explants as a means of assessing development in vitro. Approaches to achieve gain of function and loss of function (morpholino oligonucleotides) in chick are outlined, and methods for introducing these reagents by electroporation are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8(1):9–17

    CAS  PubMed  Google Scholar 

  2. Streit A (2008) EC culture: a method to culture early chick embryos. In: PT Sharpe IM (ed) Molecular embryology, vol 461. Humana Press, New York, NY, pp 255–264

    Chapter  Google Scholar 

  3. Dickinson M, Selleck M, McMahon A, Bronner-Fraser M (1995) Dorsalization of the neural tube by the non-neural ectoderm. Development 121:2099–2106

    CAS  PubMed  Google Scholar 

  4. Gammill LS, Bronner-Fraser M (2002) Genomic analysis of neural crest induction. Development 129(24):5731–5741

    Article  CAS  PubMed  Google Scholar 

  5. Bronner-Fraser M, Garcia-Castro M (2008) Manipulations of neural crest cells or their migratory pathways. Methods Cell Biol 87:75–96

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Castro MI, Marcelle C, Bronner-Fraser M (2002) Ectodermal Wnt function as a neural crest inducer. Science 297:848–851

    CAS  PubMed  Google Scholar 

  7. Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380(6569):66–68

    Article  CAS  PubMed  Google Scholar 

  8. Chesnutt C, Niswander L (2004) Plasmid-based short-hairpin RNA interference in the chicken embryo. Genesis 39(2):73–78

    Article  CAS  PubMed  Google Scholar 

  9. Das RM, Van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC et al (2006) A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294(2):554–563

    Article  CAS  PubMed  Google Scholar 

  10. Morin V, Véron N, Marcelle C (2017) CRISPR/Cas9 in the chicken embryo. In: Sheng G (ed) Avian and reptilian developmental biology, vol 1650. Humana Press, New York, NY, pp 113–123

    Chapter  Google Scholar 

  11. Gandhi S, Piacentino M, Vieceli F, Bronner M (2017) Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Dev Biol 432:86–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams RM, Senanayake U, Artibani M, Taylor G, Wells D, Ahmed AA et al (2018) Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development 145(4):dev160333. https://doi.org/10.1242/dev.160333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moulton J, Yan Y (2008) Using morpholinos to control gene expression. Curr Protoc Mol Biol 83:26.28.21–26.28.29

    Google Scholar 

  14. Moulton J (2017) Making a Morpholino experiment work: controls, Favoring specificity, improving efficacy, storage, and dose. In: Moulton HM (ed) Morpholino oligomers, vol 1565. Humana Press, New York, NY, pp 17–29

    Chapter  Google Scholar 

  15. Eisen J, Smith J (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  CAS  PubMed  Google Scholar 

  16. Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256

    Article  CAS  PubMed  Google Scholar 

  17. Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129(9):2087–2098

    CAS  PubMed  Google Scholar 

  18. McLarren K, Litsiou A, Streit A (2003) DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev Biol 259:34–47

    Article  CAS  PubMed  Google Scholar 

  19. Swartz M, Eberhart J, Mastick G, Krull C (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21

    Article  CAS  PubMed  Google Scholar 

  20. Simoes-Costa M, McKeown S, Tan-Cabugao J, Sauka-Spengler T, Bronner M (2012) Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome. PLoS Genet 8(12):e1003142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40. https://doi.org/10.1186/1741-7007-6-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellairs R, Osmond M (1998) The atlas of Chick development. Academic Press, San Diego, CA

    Google Scholar 

  23. Fekete D, Cepko C (1993) Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol Cell Biol 13:1604–2613

    Article  Google Scholar 

  24. Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229(3):433–439

    Article  CAS  PubMed  Google Scholar 

  25. Hamburger V, Hamilton H (1992) Republication of a series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  CAS  PubMed  Google Scholar 

  26. Conrad GW, Bee JA, Roche SM, Teillet MA (1993) Fabrication of microscalpels by electrolysis of tungsten wire in a meniscus. J Neurosci Methods 50(1):123–127

    Article  CAS  PubMed  Google Scholar 

  27. Chapman S, Collignon J, Schoenwolf C, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  29. Cui C, Cheuvront TJ, Lansford RD, Moreno-Rodriguez RA, Schultheiss TM, Rongish BJ (2009) Dynamic positional fate map of the primary heart-forming region. Dev Biol 332(2):212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ezin AM, Fraser SE, Bronner-Fraser M (2009) Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Dev Biol 330(2):221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandez-Garre P, Rodriguez-Gallardo L, Gallego-Diaz V, Alvarez IS, Puelles L (2002) Fate map of the chicken neural plate at stage 4. Development 129(12):2807–2822

    CAS  PubMed  Google Scholar 

  32. Lopez-Sanchez C, Garcia-Martinez V, Schoenwolf GC (2001) Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Organs 169(4):334–346

    Article  CAS  PubMed  Google Scholar 

  33. Nieto M, Patel K, Wilkinson D (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

    Article  CAS  PubMed  Google Scholar 

  34. Kos R, Reedy M, Johnson R, Erickson C (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura S. Gammill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gammill, L.S., Jacques-Fricke, B., Roffers-Agarwal, J. (2019). Embryological and Genetic Manipulation of Chick Development. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics