Skip to main content

Assaying NanoLuc Luciferase Activity from mRNA-Injected Xenopus Embryos

  • Protocol
  • First Online:
Book cover Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

The earliest steps of animal development depend upon posttranscriptional events that drive the embryonic cell cycle and guide cell fate decisions. The analysis of post-transcriptional regulatory events has relied upon the use of chimeric reporter mRNAs that encode firefly luciferase fused to potential regulatory sequences. A new and more sensitive luciferase developed recently called NanoLuc has the potential to improve reporter studies and provide new insights into the regulation of embryonic processes. Here I describe how to create and analyze reporter mRNAs encoding NanoLuc luciferase using extracts from microinjected Xenopus embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M (1994) The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 8:926–938

    Article  CAS  Google Scholar 

  2. Arnone MI, Dmochowski IJ, Gache C (2004) Using reporter genes to study cis-regulatory elements. Methods Cell Biol 74:621–652

    Article  CAS  Google Scholar 

  3. Miraglia LJ, King FJ, Damoiseaux R (2011) Seeing the light: luminescent reporter gene assays. Comb Chem High Throughput Screen 14:648–657

    Article  CAS  Google Scholar 

  4. Gallie DR (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5:2108–2116

    Article  CAS  Google Scholar 

  5. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb Protoc 2009:pdb top64

    Article  Google Scholar 

  6. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  7. de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci U S A 82:7870–7873

    Article  Google Scholar 

  8. Hooper CE, Ansorge RE, Rushbrooke JG (1994) Low-light imaging technology in the life sciences. J Biolumin Chemilumin 9:113–122

    Article  CAS  Google Scholar 

  9. Hall MP, Unch J, Binkowski BF, Valley MP, Braeden LB, Wood MG et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  CAS  Google Scholar 

  10. England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27:1175–1187

    Article  CAS  Google Scholar 

  11. Nilsen TW, Rio DC (2012) In vitro transcription of labeled RNA: synthesis, capping, and substitution. Cold Spring Harb Protoc 2012:1181–1186

    PubMed  Google Scholar 

  12. Rio DC (2015) Denaturation and electrophoresis of RNA with glyoxal. Cold Spring Harb Protoc 2015:223–226

    PubMed  Google Scholar 

  13. Rio DC (2015) Denaturation and electrophoresis of RNA with formaldehyde. Cold Spring Harb Protoc 2015:219–222

    PubMed  Google Scholar 

  14. Park S, Blaser S, Marchal MA, Houston DW, Sheets MD (2016) A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development 143:864–871

    Article  CAS  Google Scholar 

  15. Zhang Y, Cooke A, Park s, Dewey CN, Wickens M, Sheets MD (2013) Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA 19:1575–1582

    Article  CAS  Google Scholar 

  16. Zhang Y, Forinash KD, McGivern J, Fritz B, Dorey K, Sheets MD (2009) Spatially restricted translation of the xCR1 mRNA in Xenopus embryos. Mol Cell Biol 29:3791–3802

    Article  CAS  Google Scholar 

  17. Sive HL, Grainger RM, Harland RM (2010) Microinjection of Xenopus embryos. Cold Spring Harb Protoc 2010:pdb ip81

    Article  Google Scholar 

Download references

Acknowledgments

Work in the Sheets lab was supported by NIH grants (R21HD076828, R01HD091921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Sheets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sheets, M.D. (2019). Assaying NanoLuc Luciferase Activity from mRNA-Injected Xenopus Embryos. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics