Skip to main content

An Accessible Protocol for the Generation of CRISPR-Cas9 Knockouts Using INDELs in Zebrafish

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

The ability to create targeted mutations in specific genes, and therefore a loss-of-function condition, provides essential information about their endogenous functions during development and homeostasis. The discovery that CRISPR-Cas9 can target specific sequences according to base-pair complementarity and readily create knockouts in a desired gene has elevated the implementation of genetic analysis in numerous organisms. As CRISPR-Cas9 has become a powerful tool in a number of species, multiple methods for designing, creating, and screening editing efficiencies have been published, each of which has unique benefits. This chapter presents a cost-efficient, accessible protocol for creating knockout mutants in zebrafish using insertions/deletions (INDELS), from target site selection to mutant propagation, using basic laboratory supplies. The presented approach can be adapted to other systems, including any vertebrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701. https://doi.org/10.1038/nbt1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700. https://doi.org/10.1038/nbt.1939

    Article  CAS  PubMed  Google Scholar 

  3. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67. https://doi.org/10.1038/nature13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD et al (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708. https://doi.org/10.1371/journal.pone.0068708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841. https://doi.org/10.1038/srep08841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shankaran SS, Dahlem TJ, Bisgrove BW, Yost HJ, Tristani-Firouzi M (2017) CRISPR/Cas9-directed gene editing for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens. Curr Protoc Mol Biol 119:31.9.1–31.9.22. https://doi.org/10.1002/cpmb.42

    Article  Google Scholar 

  8. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491. https://doi.org/10.1016/j.cell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M et al (2015) Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat Methods 12:401–403. https://doi.org/10.1038/nmeth.3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez JP, Vejnar CE, Giraldez AJ, Rouet R, Moreno-Mateos MA (2018) Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods. https://doi.org/10.1016/j.ymeth.2018.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ et al (2017) RNA targeting with CRISPR–Cas13. Nature 550:280. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276. https://doi.org/10.1093/nar/gkw398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407. https://doi.org/10.1093/nar/gku410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186. https://doi.org/10.1371/journal.pone.0098186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zebrafish Microinjection Techniques | Protocol. https://www.jove.com/science-education/5130/zebrafish-microinjection-techniques. Accessed 1 Aug 2018.

  18. Prykhozhij SV, Steele SL, Razaghi B, Berman JN (2017) A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish. Dis Model Mech 10:811–822. https://doi.org/10.1242/dmm.026765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara E. Moravec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moravec, C.E., Pelegri, F.J. (2019). An Accessible Protocol for the Generation of CRISPR-Cas9 Knockouts Using INDELs in Zebrafish. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics