Skip to main content

Generation of Xenopus Haploid, Triploid, and Hybrid Embryos

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

Frog species of the genus Xenopus are widely used for studies of cell and developmental biology, and recent genome sequencing has revealed interesting phylogenetic relationships. Here we describe methods to generate haploid, triploid, and hybrid species starting from eggs and sperm of Xenopus laevis and Xenopus tropicalis that enable investigation of how genome size and content affect physiology at the organismal, cellular, and subcellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs R (1947) The experimental production and development of triploid frog embryos. J Exp Zool 106:237–266

    Article  CAS  Google Scholar 

  2. Fankhauser G, Watson RC (1942) Heat-induced triploidy in the newt, Triturus viridescens. Proc Natl Acad Sci U S A 28:436–440

    Article  CAS  Google Scholar 

  3. Michaels CJ, Tapley B, Harding L, Bryant Z, Grant S (2015) Breeding and rearing the critically endangered lake Oku clawed frog (Xenopus longipes Loumont and Kobel 1991). Amphib Reptile Conserv 9:100–110

    Google Scholar 

  4. Tompkins R (1978) Triploid and gynogenetic diploid Xenopus laevis. J Exp Zool 203:251–255

    Article  Google Scholar 

  5. Gurdon JB (1962) The transplantation of nuclei between two species of Xenopus. Dev Biol 5:68–83

    Article  CAS  Google Scholar 

  6. Kawahara H (1978) Production of triploid and gynogenetic diploid Xenopus by cold treatment. Develop Growth Differ 20:227–236

    Article  Google Scholar 

  7. Müller WP, Thiébaud CH, Ricard L, Fischberg M (1978) The induction of triploidy by pressure in Xenopus laevis. Rev Suisse Zool 85:20–26

    Article  Google Scholar 

  8. Bürki E (1985) The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis, and their viable hybrid. Biochem Genet 23:73–88

    Article  Google Scholar 

  9. Narbonne P, Simpson DE, Gurdon JB (2011) Deficient induction response in a Xenopus nucleocytoplasmic hybrid. PLoS Biol 9:e1001197

    Article  CAS  Google Scholar 

  10. De Robertis EM, Black P (1979) Hybrids of Xenopus laevis and Xenopus borealis express proteins from both parents. Dev Biol 68:334–339

    Article  Google Scholar 

  11. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:1–15

    Article  Google Scholar 

  12. Hamilton L (1963) An experimental analysis of the development of the haploid syndrome in embryos of Xenopus laevis. J Embryol Exp Morphol 11:267–278

    CAS  PubMed  Google Scholar 

  13. Fox H, Hamilton L (1971) Ultrastructure of diploid and haploid cells of Xenopus laevis larvae. J Embryol Exp Morphol 26:81–98

    CAS  PubMed  Google Scholar 

  14. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, New York

    Google Scholar 

  15. Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I, Ford B et al (2018) Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553(7688):337–341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Heald lab for input. We thank Maiko Kitaoka and Kelly Miller for critical reading of the manuscript. RG was supported by an HFSP long-term fellowship LT 0004252014-L. RH was supported by NIH R35 GM118183 and the Flora Lamson Hewlett Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Heald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gibeaux, R., Heald, R. (2019). Generation of Xenopus Haploid, Triploid, and Hybrid Embryos. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics