Skip to main content

Ex Utero Culture and Imaging of Mouse Embryos

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

Mouse genetic approaches when combined with live imaging tools are revolutionizing our current understanding of mammalian developmental biology. The availability and improvement of a wide variety of genetically encoded fluorescent proteins have provided indispensable tools to visualize cells and subcellular features in living organisms. It is now possible to generate genetically modified mouse lines expressing several spectrally distinct fluorescent proteins in a tissue-specific or -inducible manner. Such reporter-expressing lines make it possible to image dynamic cellular behaviors in the context of living embryos undergoing normal or aberrant development. As with all viviparous mammals, mouse embryos develop within the uterus, and so live imaging experiments require culture conditions that closely mimic the in vivo environment. Over the past decades, significant advances have been made in developing conditions for culturing both pre- and postimplantation-stage mouse embryos. In this chapter, we discuss routine methods for ex utero culture of preimplantation- and postimplantation-stage mouse embryos. In particular, we describe protocols for collecting mouse embryos of various stages, setting up culture conditions for their ex utero culture and imaging, and using laser scanning confocal microscopy to visualize live processes in mouse embryos expressing fluorescent reporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069. https://doi.org/10.1126/science.1162493

    Article  CAS  PubMed  Google Scholar 

  2. Megason SG, Fraser SE (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120(11):1407–1420

    Article  CAS  PubMed  Google Scholar 

  3. Hadjantonakis AK, Dickinson ME, Fraser SE, Papaioannou VE (2003) Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4(8):613–625. https://doi.org/10.1038/nrg1126

    Article  CAS  PubMed  Google Scholar 

  4. Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol 27(5):266–276. https://doi.org/10.1016/j.tibtech.2009.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dickinson ME (2006) Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn 235(9):2386–2400. https://doi.org/10.1002/dvdy.20889

    Article  PubMed  Google Scholar 

  6. Viotti M, Nowotschin S, Hadjantonakis AK (2014) SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 16(12):1146–1156. https://doi.org/10.1038/ncb3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33. https://doi.org/10.1186/1472-6750-4-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA et al (2005) Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 42(3):162–171. https://doi.org/10.1002/gene.20139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE et al (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434(7031):391–395. https://doi.org/10.1038/nature03388

    Article  CAS  PubMed  Google Scholar 

  10. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135(18):3081–3091. https://doi.org/10.1242/dev.021519

    Article  CAS  PubMed  Google Scholar 

  11. Xenopoulos P, Kang M, Puliafito A, Di Talia S, Hadjantonakis AK (2015) Heterogeneities in nanog expression drive stable commitment to pluripotency in the mouse blastocyst. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  12. Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J et al (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44(4):202–218. https://doi.org/10.1002/dvg.20203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chi X, Hadjantonakis AK, Wu Z, Hyink D, Costantini F (2009) A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis 47(2):61–66. https://doi.org/10.1002/dvg.20452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larina IV, Shen W, Kelly OG, Hadjantonakis AK, Baron MH, Dickinson ME (2009) A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken) 292(3):333–341. https://doi.org/10.1002/ar.20821

    Article  Google Scholar 

  15. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99(12):7877–7882. https://doi.org/10.1073/pnas.082243699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadjantonakis AK, Macmaster S, Nagy A (2002) Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Long JZ, Lackan CS, Hadjantonakis AK (2005) Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol 5:20. https://doi.org/10.1186/1472-6750-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  19. Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 47(5):330–336. https://doi.org/10.1002/dvg.20500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40. https://doi.org/10.1186/1741-7007-6-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones EA, Baron MH, Fraser SE, Dickinson ME (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 287(4):H1561–H1569. https://doi.org/10.1152/ajpheart.00081.2004

    Article  CAS  PubMed  Google Scholar 

  22. Kwon GS, Hadjantonakis AK (2007) Eomes::GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis 45(4):208–217. https://doi.org/10.1002/dvg.20293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Srinivas S, Goldberg MR, Watanabe T, D’Agati V, al-Awqati Q, Costantini F (1999) Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genet 24(3–4):241–251. https://doi.org/10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  24. Kwon GS, Hadjantonakis AK (2009) Transthyretin mouse transgenes direct RFP expression or Cre-mediated recombination throughout the visceral endoderm. Genesis 47(7):447–455. https://doi.org/10.1002/dvg.20522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freyer L, Schroter C, Saiz N, Schrode N, Nowotschin S, Martinez-Arias A et al (2015) A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice. BMC Dev Biol 15:38. https://doi.org/10.1186/s12861-015-0086-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu T, Hadjantonakis AK, Nowotschin S (2017) Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 6(5):678–687. https://doi.org/10.1242/bio.024638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nowotschin S, Xenopoulos P, Schrode N, Hadjantonakis AK (2013) A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev Biol 13:15. https://doi.org/10.1186/1471-213X-13-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M (2009) Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev Biol 331(2):210–221. https://doi.org/10.1016/j.ydbio.2009.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perea-Gomez A, Meilhac SM, Piotrowska-Nitsche K, Gray D, Collignon J, Zernicka-Goetz M (2007) Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev Biol 7:96. https://doi.org/10.1186/1471-213X-7-96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nowotschin S, Hadjantonakis AK (2009) Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev Biol 9(1):49. https://doi.org/10.1186/1471-213X-9-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Develop Growth Differ 55(4):390–405. https://doi.org/10.1111/dgd.12062

    Article  CAS  Google Scholar 

  32. Sutherland AE, Speed TP, Calarco PG (1990) Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev Biol 137(1):13–25

    Article  CAS  PubMed  Google Scholar 

  33. Lehtonen E (1980) Changes in cell dimensions and intercellular contacts during cleavage-stage cell cycles in mouse embryonic cells. J Embryol Exp Morphol 58:231–249

    CAS  PubMed  Google Scholar 

  34. Flint OP, Ede DA (1982) Cell interactions in the developing somite: in vitro comparisons between amputated (am/am) and normal mouse embryos. J Embryol Exp Morphol 67:113–125

    CAS  PubMed  Google Scholar 

  35. Dickinson ME, Simbuerger E, Zimmermann B, Waters CW, Fraser SE (2003) Multiphoton excitation spectra in biological samples. J Biomed Opt 8(3):329–338. https://doi.org/10.1117/1.1583734

    Article  PubMed  Google Scholar 

  36. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009. https://doi.org/10.1126/science.1100035

    Article  CAS  PubMed  Google Scholar 

  37. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572. https://doi.org/10.1016/j.gde.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  38. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G et al (2016) Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev Cell 36(2):225–240. https://doi.org/10.1016/j.devcel.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  39. Amat F, Hockendorf B, Wan Y, Lemon WC, McDole K, Keller PJ (2015) Efficient processing and analysis of large-scale light-sheet microscopy data. Nat Protoc 10(11):1679–1696. https://doi.org/10.1038/nprot.2015.111

    Article  CAS  PubMed  Google Scholar 

  40. Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK, Dickinson ME (2014) Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development 141(22):4406–4414. https://doi.org/10.1242/dev.111021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH, Mochizuki A et al (2013) Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS One 8(7):e64506. https://doi.org/10.1371/journal.pone.0064506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH, Mochizuki A et al (2014) Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat Protoc 9(3):575–585. https://doi.org/10.1038/nprot.2014.035

    Article  CAS  PubMed  Google Scholar 

  43. Lou X, Kang M, Xenopoulos P, Munoz-Descalzo S, Hadjantonakis AK (2014) A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports 2(3):382–397. https://doi.org/10.1016/j.stemcr.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saiz N, Kang M, Schrode N, Lou X, Hadjantonakis AK (2016) Quantitative analysis of protein expression to study lineage specification in mouse preimplantation embryos. J Vis Exp (108):53654. https://doi.org/10.3791/53654

  45. Kang M, Garg V, Hadjantonakis AK (2017) Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev Cell 41(5):496–510.e495. https://doi.org/10.1016/j.devcel.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrode N, Saiz N, Di Talia S, Hadjantonakis AK (2014) GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 29(4):454–467. https://doi.org/10.1016/j.devcel.2014.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Copp AJ, Cockroft DL (1990) Postimplantation mammalian embryos. A practical approach. IRL, Oxford

    Google Scholar 

  48. Downs KM, Davies T (1993) Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118(4):1255–1266

    CAS  PubMed  Google Scholar 

  49. Theiler K (1989) The house mouse. Atlas of embryonic development. Springer-Verlag, New York, NY

    Book  Google Scholar 

  50. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  51. Jones EA, Crotty D, Kulesa PM, Waters CW, Baron MH, Fraser SE et al (2002) Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34(4):228–235. https://doi.org/10.1002/gene.10162

    Article  CAS  PubMed  Google Scholar 

  52. Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13(6):884–896. https://doi.org/10.1016/j.devcel.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  53. Moore-Scott BA, Gordon J, Blackburn CC, Condie BG, Manley NR (2003) New serum-free in vitro culture technique for midgestation mouse embryos. Genesis 35(3):164–168. https://doi.org/10.1002/gene.10179

    Article  PubMed  Google Scholar 

  54. Keller-Peck CR, Walsh MK, Gan WB, Feng G, Sanes JR, Lichtman JW (2001) Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31(3):381–394

    Article  CAS  PubMed  Google Scholar 

  55. Cahalan MD, Parker I, Wei SH, Miller MJ (2003) Real-time imaging of lymphocytes in vivo. Curr Opin Immunol 15(4):372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28(12):1022–1024

    Article  CAS  PubMed  Google Scholar 

  57. Puri S, Hebrok M (2007) Dynamics of embryonic pancreas development using real-time imaging. Dev Biol 306(1):82–93. https://doi.org/10.1016/j.ydbio.2007.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our present and past laboratory colleagues for helping perfect the techniques detailed in this chapter. Work in our laboratory is supported by the National Institutes of Health (R01DK084391, R01HD094868, and P30CA008748) and The Starr Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Katerina Hadjantonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nowotschin, S., Garg, V., Piliszek, A., Hadjantonakis, AK. (2019). Ex Utero Culture and Imaging of Mouse Embryos. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics