Skip to main content

Method to Study the Survival Abilities of Foodborne Bacterial Pathogens Under Food Processing Conditions

  • Protocol
  • First Online:
Foodborne Bacterial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1918))

  • 1306 Accesses

Abstract

The proper use of controllable atmospheric containers can facilitate investigations related to the survival abilities, and physiological states of key and emerging foodborne pathogens under recreated applicable food processing environmental conditions. Of particular note, the use of saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50(1–2):33–44

    Article  CAS  Google Scholar 

  2. Carrasco E, Morales-Rueda A, Garcia-Gimeno RM (2012) Cross-contamination and recontamination by salmonella in foods: a review. Food Res Int 45(2):545–556

    Article  Google Scholar 

  3. Todd ECD, Greig JD, Bartleson CA, Michaels BS (2009) Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. J Food Protect 72(1):202–219

    Article  Google Scholar 

  4. Stellato G, De Filippis F, La Storia A, Ercolini D (2015) Coexistence of lactic acid Bacteria and potential spoilage microbiota in a dairy processing environment. Appl Environ Microb 81(22):7893–7904

    Article  CAS  Google Scholar 

  5. Ronnqvist M, Ratto M, Tuominen P, Salo S, Maunula L (2013) Swabs as a tool for monitoring the presence of Norovirus on environmental surfaces in the food industry. J Food Protect 76(8):1421–1428

    Article  Google Scholar 

  6. Stellato G, Utter DR, Voorhis A, De Angelis M, Eren AM, Ercolini D (2017) A few Pseudomonas Oligotypes dominate in the meat and dairy processing environment. Front Microbiol 8

    Google Scholar 

  7. Habimana O, Nesse LL, Moretro T, Berg K, Heir E, Vestby LK, Langsrud S (2014) The persistence of Salmonella following desiccation under feed processing environmental conditions: a subject of relevance. Lett Appl Microbiol 59(5):464–470

    Article  CAS  Google Scholar 

  8. Moretro T, Hoiby-Pettersen GS, Habimana O, Heir E, Langsrud S (2011) Assessment of the antibacterial activity of a triclosan-containing cutting board. Int J Food Microbiol 146(2):157–162

    Article  Google Scholar 

  9. Moretro T, Heir E, Mo KR, Habimana O, Abdelgani A, Langsrud S (2010) Factors affecting survival of Shigatoxin-producing Escherichia coli on abiotic surfaces. Int J Food Microbiol 138(1-2):71–77

    Article  CAS  Google Scholar 

  10. Asadishad B, Ghoshal S, Tufenkji N (2011) Method for the direct observation and quantification of survival of Bacteria attached to negatively or positively charged surfaces in an aqueous medium. Environ Sci Technol 45(19):8345–8351

    Article  CAS  Google Scholar 

  11. Zotta T, Guidone A, Tremonte P, Parente E, Ricciardi A (2012) A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World J Microb Biot 28(3):919–927

    Article  CAS  Google Scholar 

  12. Sunny-Roberts EO, Knorr D (2008) Evaluation of the response of lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiol 25(1):183–189

    Article  CAS  Google Scholar 

  13. Zhao W, Yang RJ, Zhang HQ, Zhang WB, Hua XA, Tang YL (2011) Quantitative and real time detection of pulsed electric field induced damage on Escherichia coli cells and sublethally injured microbial cells using flow cytometry in combination with fluorescent techniques. Food Control 22(3-4):566–573

    Article  Google Scholar 

  14. Greenspan L (1977) Humidity fixed-points of binary saturated aqueous-solutions. J Res Nbs a Phys Ch 81(1):89–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Habimana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Habimana, O. (2019). Method to Study the Survival Abilities of Foodborne Bacterial Pathogens Under Food Processing Conditions. In: Bridier, A. (eds) Foodborne Bacterial Pathogens. Methods in Molecular Biology, vol 1918. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9000-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9000-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8999-7

  • Online ISBN: 978-1-4939-9000-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics