Skip to main content

Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1918))

Abstract

Metabolomics is one of the more recently developed “omics” that measures low molecular weight (typically < 1500 Da) compounds in biological samples. Metabolomics has been widely explored in environmental, clinical, and industrial biotechnology applications. However, its application to the area of food safety has been limited but preliminary work has demonstrated its value. This chapter describes an untargeted (nontargeted) metabolomics workflow using gas chromatography coupled to mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for extraction of polar metabolites from media, analyzing the extracts using GC-MS and, finally, chemometric data analysis using the software “SIMCA” to identify potential pathogen-specific biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. In: Town C (ed) Functional genomics. Springer Netherlands, Dordrecht, pp 155–171. https://doi.org/10.1007/978-94-010-0448-0_11

    Chapter  Google Scholar 

  2. Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490

    Article  CAS  Google Scholar 

  3. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57

    Article  CAS  Google Scholar 

  4. Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15(2):431–440

    Article  CAS  Google Scholar 

  5. Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(1):3

    Article  CAS  Google Scholar 

  6. Hall RD, de Maagd RA (2014) Plant metabolomics is not ripe for environmental risk assessment. Trends Biotechnol 32(8):391–392

    Article  CAS  Google Scholar 

  7. Lima MRM, Diaz SO, Lamego I, Grusak MA, Vasconcelos MW, Gil AM (2014) Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves. J Proteome Res 13(6):3075–3087. https://doi.org/10.1021/pr500279f

    Article  CAS  PubMed  Google Scholar 

  8. Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31(12):2003–2011. https://doi.org/10.1093/ndt/gfv364

    Article  PubMed  Google Scholar 

  9. Kim HK, Wilson EG, Choi YH, Verpoorte R (2010) Metabolomics: a tool for anticancer lead-finding from natural products. Planta Med 76(11):1094–1102. https://doi.org/10.1055/s-0030-1249898

    Article  CAS  PubMed  Google Scholar 

  10. Hines A, Staff FJ, Widdows J, Compton RM, Falciani F, Viant MR (2010) Discovery of metabolic signatures for predicting whole organism toxicology. Toxicol Sci 115(2):369–378. https://doi.org/10.1093/toxsci/kfq004

    Article  CAS  PubMed  Google Scholar 

  11. Kouremenos KA, Johansson M, Marriott PJ (2012) Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer 3(1):404–420. https://doi.org/10.7150/jca.4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beale DJ, Dunn MS, Marney D (2010) Application of GC–MS metabolic profiling to ‘blue-green water’ from microbial influenced corrosion in copper pipes. Corros Sci 52(9):3140–3145. https://doi.org/10.1016/j.corsci.2010.04.039

    Article  CAS  Google Scholar 

  13. Beale DJ, Marney D, Marlow DR, Morrison PD, Dunn MS, Key C, Palombo EA (2013) Metabolomic analysis of cryptosporidium parvum oocysts in water: a proof of concept demonstration. Environ Pollut 174(Supplement C):201–203. https://doi.org/10.1016/j.envpol.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Beale DJ, Morrison PD, Palombo EA (2014) Detection of Listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: a proof-of-concept application. Food Control 42:343–346

    Article  CAS  Google Scholar 

  15. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas M-E, Kochhar S, Stamler J, Holmes E, Elliott P, Nicholson JK (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92(2):436–443. https://doi.org/10.3945/ajcn.2010.29672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savolainen O, Lind MV, Bergström G, Fagerberg B, Sandberg AS, Ross A (2017) Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women. Am J Clin Nutr 106(5):1302–1310. https://doi.org/10.3945/ajcn.117.152850

    Article  CAS  PubMed  Google Scholar 

  17. Pinu FR (2015) Metabolomics—the new frontier in food safety and quality research. Food Res Int 72(Supplement C):80–81. https://doi.org/10.1016/j.foodres.2015.03.028

    Article  CAS  Google Scholar 

  18. Pinu FR (2016) Early detection of food pathogens and food spoilage microorganisms: application of metabolomics. Trends Food Sci Technol 54(Supplement C):213–215. https://doi.org/10.1016/j.tifs.2016.05.018

    Article  CAS  Google Scholar 

  19. Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI (2011) GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. J Food Sci 76(4):M238–M246

    Article  CAS  Google Scholar 

  20. Li H, Zhu J (2017) Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level. Rapid Commun Mass Spectrom 31(19):1669–1676. https://doi.org/10.1002/rcm.7949

    Article  CAS  PubMed  Google Scholar 

  21. Babushok VI, Linstrom PJ, Reed J, Zenkevich I, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421

    Article  CAS  Google Scholar 

  22. Oberacher HM (2011) Wiley registry of tandem mass spectral data. John Wiley

    Google Scholar 

  23. Hummel J, Strehmel N, Bölling C, Schmidt S, Walther D, Kopka J (2013) Mass spectral search and analysis using the golm metabolome database. In: The handbook of plant metabolomics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 321–343

    Chapter  Google Scholar 

  24. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048

    Article  CAS  Google Scholar 

  25. Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan TM, Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily M, Thaden J, Viant M (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133

    Article  CAS  Google Scholar 

  27. Villas-Bôas SG, Roessner U, Hansen MA, Smedsgaard J, Nielsen J (2006) Sampling and sample preparation. Metabolome analysis: an introduction. Wiley, pp 39–82

    Google Scholar 

  28. Jadhav S, Sevior D, Bhave M, Palombo EA (2014) Detection of Listeria monocytogenes from selective enrichment broth using MALDI–TOF mass spectrometry. J Proteome 97:100–106

    Article  CAS  Google Scholar 

  29. Ng JSY, Ryan U, Trengove RD, Maker GL (2012) Development of an untargeted metabolomics method for the analysis of human faecal samples using cryptosporidium-infected samples. Mol Biochem Parasitol 185(2):145–150

    Article  CAS  Google Scholar 

  30. Karpe AV, Beale DJ, Harding IH, Palombo EA (2015) Optimization of degradation of winery-derived biomass waste by ascomycetes. J Chem Technol Biotechnol 90(10):1793–1801. https://doi.org/10.1002/jctb.4486

    Article  CAS  Google Scholar 

  31. Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD (2017) Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev. Biochem 86:277–304

    Article  CAS  Google Scholar 

  32. Abbiss H, Rawlinson C, Maker GL, Trengove R (2015) Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics 11(6):1908–1921

    Article  CAS  Google Scholar 

  33. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  34. Azizan KA, Baharum SN, Ressom HW, Noor NM (2012) GC-MS analysis and PLS-DA validation of the trimethyl silyl-derivatization techniques. Am J Appl Sci 9(7):1124–1136

    Article  CAS  Google Scholar 

  35. Karpe AV, Beale DJ, Morrison PD, Harding IH, Palombo EA, Boden R (2015) Untargeted metabolic profiling of Vitis vinifera during fungal degradation. FEMS Microbiol Lett 362(10). https://doi.org/10.1093/femsle/fnv060

  36. Yi L, Shi S, Yi Z, He R, Lu H, Liang Y (2014) MeOx-TMS derivatization for GC-MS metabolic profiling of urine and application in the discrimination between normal C57BL/6 J and type 2 diabetic KK-Ay mice. Anal Methods 6(12):4380–4387

    Article  CAS  Google Scholar 

  37. Fiehn O (2016) Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.34.31–30.34.32

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Meat Processor Corporation (AMPC) for funding this research under the Research, Development, and Extension program 2014–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo A. Palombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jadhav, S.R., Shah, R.M., Karpe, A.V., Beale, D.J., Kouremenos, K.A., Palombo, E.A. (2019). Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics. In: Bridier, A. (eds) Foodborne Bacterial Pathogens. Methods in Molecular Biology, vol 1918. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9000-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9000-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8999-7

  • Online ISBN: 978-1-4939-9000-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics