Skip to main content

Bone Measurements by Peripheral Quantitative Computed Tomography in Rodents

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

This chapter provides information for the in vivo use of peripheral quantitative computed tomography in rats and mice to determine bone density and cortical geometric data, including suggestions for study design, instrument setting, and data interpretation. This update also provides guidance for the use of pQCT to extract muscle and fat cross-sectional area information from the bone scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guglielmi G, Glüer CC, Majumdar S, Blunt BA, Genant HK (1995) Current methods and advances in bone densitometry. Eur Radiol 5:129–139

    Article  CAS  PubMed  Google Scholar 

  2. Gasser JA (1997) Quantitative assessment of bone mass and geometry by pQCT in rats in vivo and Site specificity of changes at different skeletal sites. J Jpn Soc Bone Morphom 7:107–114

    Google Scholar 

  3. Gasser JA (1995) Assessing bone quantity by pQCT. Bone 17:S145–S154

    Google Scholar 

  4. Ferretti JL, Capozza RF, Zanchetta JR (1995) Mechanical validation of a tomographic (pQCT) index for non-invasive estimation of rat femur bending strength. Bone 17:S145–S162

    Article  Google Scholar 

  5. Ferretti JL, Capozza RF, Zanchetta JR (1995) Mechanical validation of a noninvasive (pQCT) index of bending strength in rat femurs. Bone 18:97–102

    Article  Google Scholar 

  6. Ferretti JL (1997) Non-invasive assessment of bone architecture and biomechanical properties in animals and humans employing pQCT technology. J Jpn Soc Bone Morphom 7:115–125

    Google Scholar 

  7. Schneider P, Börner W (1991) Peripheral quantitative computed tomography for bone mineral measurements using a new special QCT-scanner: methodology, normal values, comparison with manifest osteoporosis. Fortschr Röntgenstr 154:292–299

    Article  CAS  Google Scholar 

  8. Hermann GT (2010) Image reconstruction from projections: fundamentals of computerized tomography, 2nd edn. Springer, New York. ISBN 978-1-85233-617-2

    Google Scholar 

  9. Banu MJ, Orhii P, Mejia W, McCarter RJM, Mosekilde L, Thomsen JS, Kalu DN (1999) Analysis of the effects of growth hormone, voluntary exercise and food restriction on diaphyseal bone in female F344 rats. Bone 25:469–480

    Article  CAS  PubMed  Google Scholar 

  10. Breen SA, Millest AJ, Loveday BE, Johnstone D, Waterton JC (1996) Regional analysis of bone mineral density in the distal femur and proximal tibia using peripheral computed tomography in the rat in vivo. Calcif Tissue Int 58:449–453

    CAS  PubMed  Google Scholar 

  11. Ominsky MS, Brown DL, Van G, Cordover D, Pacheco E, Frazier E, Cherepow L, Higgins-Garn M, Aguirre JI, Wronski TJ, Stolina M, Zhou L, Pyrah I, Boyce RW (2015) Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81:380–391

    Article  CAS  PubMed  Google Scholar 

  12. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    Article  CAS  PubMed  Google Scholar 

  13. Graichen H, Lochmüller EM, Wolf E, Langkabel B, Stammberger T, Haubner M, Renner-Müller I, Engelmeier KH, Eckstein F (1998) A non-destructive technique for a 3-D microstructural phenotypic characterisation of bones in genetically altered mice: preliminary data in growth hormone transgenic animals and normal controls. Anat Embryol 199:239–248

    Article  Google Scholar 

  14. Schmidt C, Priemel M, Kohler T, Weusten A, Müller R, Amling M, Eckstein F (2003) Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (μCT). J Bone Miner Res 18:1486–1496

    Article  PubMed  Google Scholar 

  15. Chang MK, Kramer I, Huber T, Kinzel B, Guth-Gundel S, Leupin O, Kneissel M (2014) Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A 17:E5187–E5195. https://doi.org/10.1073/pnas.1413828111

    Article  CAS  Google Scholar 

  16. Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki I, Yamaguchi H (1989) Characteristics of an ovariectomized osteopenic rat model. J Bone Miner Res 4:13–22

    Article  CAS  PubMed  Google Scholar 

  18. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–192

    Article  CAS  PubMed  Google Scholar 

  19. Rauch F, Schönau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organisation. J Bone Miner Res 16:597–604

    Article  CAS  PubMed  Google Scholar 

  20. Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of bending strength of rat femurs. Bone 18:97–102

    Article  CAS  PubMed  Google Scholar 

  21. Rittweger J, Michaelis I, Giehl M, Wüsecke P, Felsenberg D (2004) Adjusting for the partial volume effect in cortical bone analyses of pQCT. J Musculoskelet Neuronal Interact 4:436–441

    CAS  PubMed  Google Scholar 

  22. Andreassen TT, Jorgensen PH, Flyvbjerg A, Orskov A, Oxlund H (1995) Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J Bone Miner Res 10:1057–1067

    Article  CAS  PubMed  Google Scholar 

  23. Andreassen TT, Oxlund H (2000) The influence of combined parathyroid hormone and growth hormone treatment on cortical bone in aged ovariectomized rats. J Bone Miner Res 15:2266–2275

    Article  CAS  PubMed  Google Scholar 

  24. Weber K, Goldberg M, Stangassinger M, Erben RG (2001) 1 α–hydroxyvitamin D2 is less toxic but not bone selective relative to 1 α-hydroxyvitamin D3 in ovariectomized rats. J Bone Miner Res 16:639–651

    Article  CAS  PubMed  Google Scholar 

  25. Ejersted C, Andreassen TT, Oxlund H, Jorgensen PH, Bak B, Haggblad J, Torring O, Nilsson MH (1993) Human parathyroid hormone (1–34) and (1–84) increase the mechanical strength and thickness of cortical bone in rats. J Bone Miner Res 8:1097–1101

    Article  CAS  PubMed  Google Scholar 

  26. Ejersted C, Andreassen TT, Nilsson MH, Oxlund H (1994) Human parathyroid hormone (1–34) increases bone formation and strength of cortical bone in aged rats. Eur J Endocrinol 130:201–207

    Article  CAS  PubMed  Google Scholar 

  27. Jee WSS, Mori S, Li XJ, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and actiavtes intracortical bone remodeling in intact and ovariectomized female rats. Bone 11:253–266

    Article  CAS  PubMed  Google Scholar 

  28. Jee WSS, Ke HZ, Li XJ (1991) Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats. Bone Miner 15:33–55

    Article  CAS  PubMed  Google Scholar 

  29. Gunness-Hey M, Hock JM (1984) Increased trabecular bone mass in rats treated with synthetic parathyroid hormone. Metab Bone Dis Relat Res 5:177–181

    Article  CAS  PubMed  Google Scholar 

  30. Gunness-Hey M, Hock JM (1993) Anabolic effect of parathyroid hormone on cancellous and cortical bone histology. Bone 14:277–281

    Article  Google Scholar 

  31. Pun S, Dearden RL, Ratkus AM, Liang H, Wronski TJ (2001) Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 28:220–226

    Article  CAS  PubMed  Google Scholar 

  32. Mori S, Jee WSS, Li XJ (1992) Production of new trabecular bone in osteopenic ovariectomized rats by prostaglandin E2. Calcif Tissue Int 50:80–87

    Article  CAS  PubMed  Google Scholar 

  33. Erben RG, Bromm S, Stangassinger M (1998) Therapeutic effi cacy of 1α,25-hydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: evidence for a direct anabolic effect of 1α,25-hydroxyvitamin D3 on bone. Endocrinology 139:4319–4328

    Article  CAS  PubMed  Google Scholar 

  34. Kneissel M, Boyde A, Gasser JA (2001) Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1–34). Bone 28:237–250

    Article  CAS  PubMed  Google Scholar 

  35. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralisation density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  CAS  PubMed  Google Scholar 

  36. Banu J, Wang L, Kalu DN (2003) Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif Tissue Int 73(2):196–201

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, McMahan CA, Banu J, Okafor MC, Kalu DN (2003) Rodent model for investigating the effects of estrogen on bone and muscle relationship during growth. Calcif Tissue Int 72(2):151–155

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Mohan S, Gu W, Wergedal J, Baylink DJ (2001) Quantitative assessment of forearm muscle size, forelimb grip strength, forearm bone mineral density, and forearm bone size in determining humerus breaking strength in 10 inbred strains of mice. Calcif Tissue Int 68(6):365–369

    Article  CAS  PubMed  Google Scholar 

  39. Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, Judd AM, Robling AG, Fuchs RK (2013) Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone 54(1):98–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rachon D, Vortherms T, Seidlová-Wuttke D, Wuttke W (2008) Effects of black cohosh extract on body weight gain, intra-abdominal fat accumulation, plasma lipids and glucose tolerance in ovariectomized Sprague-Dawley rats. Maturitas 60(3-4):209–215

    Article  PubMed  Google Scholar 

  41. Seidlova-Wuttke D, Nguyen BT, Wuttke W (2012) Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-beta-deleted mice. Comp Med 62(1):8–13

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boyde A, Jones SJ, Aerssens J, Dequeker J (1995) Mineral density quantification of the human cortical illiac crest by backscattered electron image analysis: Variations with age, sex, and degree of osteoarthritis. Bone 16:619–627

    Article  CAS  PubMed  Google Scholar 

  43. Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach for the quantification of bone mineral distribution: Backscattered electron image grey levels correlated to calcium K alpha-line intensities. Scanning Microsc 9:75–88

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Andreas Gasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gasser, J.A., Willnecker, J. (2019). Bone Measurements by Peripheral Quantitative Computed Tomography in Rodents. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics