Skip to main content

Monosodium Glutamate (MSG)-Induced Animal Model of Type 2 Diabetes

  • Protocol
  • First Online:
Pre-Clinical Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1916))

Abstract

In 1976, an animal model of type 2 diabetes (T2DM) was described by Cameron et al. using injection of monosodium glutamate (MSG) in KK mice during the neonatal period. Some years later, similar models have been developed by various doses and durations and the main of these models exhibited obesity and features of diabetes mellitus, including glycosuria, hyperglycemia, hyperinsulinemia, decreased glucose tolerance, and insulin sensitivity. Studies indicated that MSG treatment of newborn animals generates necrosis of neuronal cells of the hypothalamic ventromedial nucleus and arcuate nucleus. Neonatal MSG-treatment was related to normoglycemic-normoinsulinemic state at young ages and development of obesity and hyperinsulinemia at adult ages. Following observation of a severe hypertrophy of pancreatic islets due to the proliferation of β-cells in MSG-treated mice, this model has been proposed as a useful animal model of human T2DM. A higher dose of MSG (≥4 mg/g body weight) accompanied by a longer follow-up duration (>6 months) are needed to establish a typical animal model of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S13–S27. https://doi.org/10.2337/dc18-S002

    Article  Google Scholar 

  2. Ghasemi A, Khalifi S, Jedi S (2014) Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung 101(4):408–420

    Article  CAS  PubMed  Google Scholar 

  3. Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47(3):186–198

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  5. King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gheibi S, Kashfi K, Ghasemi A (2017) A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother 95:605–613

    Article  CAS  PubMed  Google Scholar 

  7. Halpern BP (2000) Glutamate and the flavor of foods. J Nutr 130(4):910S–914S

    Article  CAS  PubMed  Google Scholar 

  8. Tanphaichitr V, Leelahagul P, Suwan K (2000) Plasma amino acid patterns and visceral protein status in users and nonusers of monosodium glutamate. J Nutr 130(4S Suppl):1005s–1006s

    Article  CAS  PubMed  Google Scholar 

  9. Insawang T, Selmi C, Cha'on U, Pethlert S, Yongvanit P, Areejitranusorn P et al (2012) Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutr Metab (Lond) 9(1):50. https://doi.org/10.1186/1743-7075-9-50

    Article  CAS  Google Scholar 

  10. Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, Pan X et al (2010) Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu nutrition study of Chinese adults. Br J Nutr 104(3):457–463

    Article  CAS  PubMed  Google Scholar 

  11. US Food and Drug Administration D (2012) Questions and answers on monosodium glutamate (MSG). US Department of Health and Human Services Nov 19. https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm328728.htm

  12. Maluly HDB, Arisseto-Bragotto AP, Reyes FGR (2017) Monosodium glutamate as a tool to reduce sodium in foodstuffs: technological and safety aspects. Food Sci Nutr 5(6):1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi Z, Yuan B, Taylor AW, Dai Y, Pan X, Gill TK et al (2011) Monosodium glutamate is related to a higher increase in blood pressure over 5 years: findings from the Jiangsu nutrition study of Chinese adults. J Hypertens 29(5):846–853

    Article  CAS  PubMed  Google Scholar 

  14. He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garside D et al (2008) Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP study. Obesity (Silver Spring) 16(8):1875–1880

    Article  CAS  Google Scholar 

  15. Baculikova M, Fiala R, Jezova D, Macho L, Zorad S (2008) Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Galpha(i2) G-protein. Gen Physiol Biophys 27(3):222–226

    CAS  PubMed  Google Scholar 

  16. Macho L, Fickova M, Jezova ZS (2000) Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res 49(Suppl 1):S79–S85

    CAS  PubMed  Google Scholar 

  17. Zorad S, Jezova D, Szabova L, Macho L, Tybitanclova K (2003) Low number of insulin receptors but high receptor protein content in adipose tissue of rats with monosodium glutamate-induced obesity. Gen Physiol Biophys 22(4):557–560

    CAS  PubMed  Google Scholar 

  18. Zorad S, Macho L, Jezova D, Fickova M (1997) Partial characterization of insulin resistance in adipose tissue of monosodium glutamate-induced obese rats. Ann N Y Acad Sci 827:541–545

    Article  CAS  PubMed  Google Scholar 

  19. Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C et al (2015) Monosodium glutamate dietary consumption decreases pancreatic beta-cell mass in adult Wistar rats. PLoS One 10(6):e0131595. https://doi.org/10.1371/journal.pone.0131595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, Prasongwattana V, Cha’on U (2015) Monosodium glutamate dietary consumption decreases pancreatic β-cell mass in adult Wistar rats. PLoS One 10(6):e0131595. https://doi.org/10.1371/journal.pone.0131595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M, Miyamoto K (2006) Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim 55(2):109–115

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki Y, Suzuki W, Shimada T, Iizuka S, Nakamura S, Nagata M, Fujimoto M, Tsuneyama K, Hokao R, Miyamoto K, Aburada M (2009) Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci 85(13–14):490–498

    Article  CAS  PubMed  Google Scholar 

  23. Cameron DP, Poon TK, Smith GC (1976) Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice. Diabetologia 12(6):621–626

    Article  CAS  PubMed  Google Scholar 

  24. Sartin JL, Lamperti AA, Kemppainen RJ (1985) Alterations in insulin and glucagon secretion by monosodium glutamate lesions of the hypothalamic arcuate nucleus. Endocr Res 11(3–4):145–155

    Article  CAS  PubMed  Google Scholar 

  25. Kubota A, Nakagawa Y, Igarashi Y (1994) Studies of gene expression in liver of insulin-like growth factor (IGF)-I, IGF binding protein-3 and growth hormone (GH) receptor/GH binding protein in rats treated neonatally with monosodium glutamate. Horm Metab Res 26(11):497–503

    Article  CAS  PubMed  Google Scholar 

  26. Meister B, Ceccatelli S, Hokfelt T, Anden NE, Anden M, Theodorsson E (1989) Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Exp Brain Res 76(2):343–368

    Article  CAS  PubMed  Google Scholar 

  27. Cameron DP, Cutbush L, Opat F (1978) Effects of monosodium glutamate-induced obesity in mice on carbohydrate metabolism in insulin secretion. Clin Exp Pharmacol Physiol 5(1):41–51

    Article  CAS  PubMed  Google Scholar 

  28. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T (1998) The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 95(25):15043–15048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikeda H (1994) KK mouse. Diabetes Res Clin Pract 24(Suppl):S313–S316

    Article  PubMed  Google Scholar 

  30. Tanaka K, Shimada M, Sasahara A, Oya N, Fujiyama Y, Hosoda S (1983) Neonatal monosodium glutamate-induced lesions of hypothalamus increase intestinal fat absorption in adult mice. Exp Neurol 79(1):141–151

    Article  CAS  PubMed  Google Scholar 

  31. Nakajima H, Tochino Y, Fujino-Kurihara H, Yamada K, Gomi M, Tajima K et al (1985) Decreased incidence of diabetes mellitus by monosodium glutamate in the non-obese diabetic (NOD) mouse. Res Commun Chem Pathol Pharmacol 50(2):251–257

    CAS  PubMed  Google Scholar 

  32. Oida K, Nakai T, Hayashi T, Miyabo S, Takeda R (1984) Plasma lipoproteins of monosodium glutamate-induced obese rats. Int J Obes 8(5):385–391

    CAS  PubMed  Google Scholar 

  33. Dolnikoff M, Martin-Hidalgo A, Machado UF, Lima FB, Herrera E (2001) Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. Int J Obes Relat Metab Disord 25(3):426–433

    Article  CAS  PubMed  Google Scholar 

  34. Machado UF, Shimizu Y, Saito M (1993) Decreased glucose transporter (GLUT 4) content in insulin-sensitive tissues of obese aurothioglucose- and monosodium glutamate-treated mice. Horm Metab Res 25(9):462–465

    Article  CAS  PubMed  Google Scholar 

  35. Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS (1997) Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res 30(5):671–674

    Article  CAS  PubMed  Google Scholar 

  36. Papa PC, Seraphim PM, Machado UF (1997) Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord 21(11):1065–1070

    Article  CAS  PubMed  Google Scholar 

  37. Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M et al (1998) Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: an animal model of multiple risk factors. Hypertens Res 21(1):1–6

    Article  CAS  PubMed  Google Scholar 

  38. Araujo TR, Freitas IN, Vettorazzi JF, Batista TM, Santos-Silva JC, Bonfleur ML et al (2017) Benefits of L-alanine or L-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. Eur J Nutr 56(6):2069–2080

    Article  CAS  PubMed  Google Scholar 

  39. Maiter D, Underwood LE, Martin JB, Koenig JI (1991) Neonatal treatment with monosodium glutamate: effects of prolonged growth hormone (GH)-releasing hormone deficiency on pulsatile GH secretion and growth in female rats. Endocrinology 128(2):1100–1106

    Article  CAS  PubMed  Google Scholar 

  40. de Carvalho Papa P, Vargas AM, Tavares da Silva JL, Nunes MT, Machado UF (2002) GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci 71(16):1917–1928

    Article  PubMed  Google Scholar 

  41. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252

    Article  CAS  PubMed  Google Scholar 

  42. Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8(1):43–53

    Article  CAS  PubMed  Google Scholar 

  43. Marmo MR, Dolnikoff MS, Kettelhut IC, Matsushita DM, Hell NS, Lima FB (1994) Neonatal monosodium glutamate treatment increases epididymal adipose tissue sensitivity to insulin in three-month old rats. Braz J Med Biol Res 27(5):1249–1253

    CAS  PubMed  Google Scholar 

  44. Niijima A, Togiyama T, Adachi A (1990) Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiol Behav 48(6):905–908

    Article  CAS  PubMed  Google Scholar 

  45. Viarouge C, Even P, Rougeot C, Nicolaidis S (1991) Effects on metabolic and hormonal parameters of monosodium glutamate (umami taste) ingestion in the rat. Physiol Behav 49(5):1013–1018

    Article  CAS  PubMed  Google Scholar 

  46. Steffens AB, Leuvenink H, Scheurink AJ (1994) Effects of monosodium glutamate (umami taste) with and without guanosine 5′-monophosphate on rat autonomic responses to meals. Physiol Behav 56(1):59–63

    Article  CAS  PubMed  Google Scholar 

  47. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164(3880):719–721

    Article  CAS  PubMed  Google Scholar 

  48. Minokoshi Y, Saito M, Shimazu T (1986) Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation. Am J Phys 251(5 Pt 2):R1005–R1008. https://doi.org/10.1152/ajpregu.1986.251.5.R1005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Ghasemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bahadoran, Z., Mirmiran, P., Ghasemi, A. (2019). Monosodium Glutamate (MSG)-Induced Animal Model of Type 2 Diabetes. In: Guest, P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8994-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8994-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8993-5

  • Online ISBN: 978-1-4939-8994-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics