Skip to main content

Creating Targeted Gene Knockouts in Brassica oleracea Using CRISPR/Cas9

  • Protocol
  • First Online:
Plant Genome Editing with CRISPR Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1917))

Abstract

While public and political views on genetic modification (inserting “foreign” genes to elicit new traits) have resulted in limited exploitation of the technology in some parts of the world, the new era of genome editing (to edit existing genes to gain new traits/genetic variation) has the potential to change the biotech landscape. Genome editing offers a faster and simpler approach to gene knockout in both single and multiple genetic locations, within a single or small number of generations, in a way that has not been possible through alternative breeding methods. Here we describe an Agrobacterium-mediated delivery approach to deliver Cas9 and dual sgRNAs into 4-day-old cotyledonary petioles of Brassica oleracea. Mutations are detected in approximately 10% of primary transgenic plants and go on in subsequent T1 and T2 generations to segregate away from the T-DNA. This enables the recovery of non-transgenic, genome-edited plants carrying a variety of mutations at the target locus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu J-K (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li JF, Aach J, Norville JE, McCormack M, Zhang D, Bush J, Sheen J (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shan Q, Wang Y, Li J, Zhang Y (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  5. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Wu J, Tang T, Liu K, Dai C (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7(1):7489. https://doi.org/10.1038/s41598-017-07871-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Zhu K, Li H, Han S, Meng Q, Khean S, Fan C, Xie K, Zhou Y (2018) Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J 16(7):1322–1335. https://doi.org/10.1111/pbi.12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Braatz J, Harloff H, Macher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus L.). Plant Physiol 174:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirchner TW, Niehaus M, Debener T, Schenk MK, Herde M (2017) Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata. PLoS One 12(9):e0185429. https://doi.org/10.1371/journal.pone.0185429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hundleby PAC, Irwin JAI (2015) Brassica oleracea and B. napus Agrobacterium Protocols. Springer Science+Business Media, New York, p 1223

    Google Scholar 

  13. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  PubMed  PubMed Central  Google Scholar 

  14. Doench JG, Fusi N, Sullender M, Hedge M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximise activity and minimise off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using clustered regularly interspersed short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  Google Scholar 

  16. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2014) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge support from the Biotechnology and Biological Sciences Research Council (BBSRC) via grant [BB/N019466/1] and grant [BB/P013511/1] to the John Innes Centre. Further illustrative photographs of the transformation of B. oleracea DH1012 can be seen at www.jic.ac.uk/technologies/genomic-services/bract/. These transformation resources were developed as part of the Biotechnology Resources for Arable Crop Transformation (BRACT) facility, initially funded by Defra (UK) and now operating on a cost-recovery basis as a transformation resource for the research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lawrenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lawrenson, T., Hundleby, P., Harwood, W. (2019). Creating Targeted Gene Knockouts in Brassica oleracea Using CRISPR/Cas9. In: Qi, Y. (eds) Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, vol 1917. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8991-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8991-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8990-4

  • Online ISBN: 978-1-4939-8991-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics