Skip to main content

Methods for Annotation and Validation of Circular RNAs from RNAseq Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Circular RNAs are an emerging class of transcript isoforms created by unique back splicing of exons to form a closed covalent circular structure. While initially considered as product of aberrant splicing, recent evidence suggests unique functions and conservation across evolution. While circular RNAs could be largely attributed to have little or no potential to encode for proteins, recent evidence points to at least a small subset of circular RNAs which encode for peptides. Circular RNAs are also increasingly shown to be biomarkers for a number of diseases including neurological disorders and cancer. The advent of deep sequencing has enabled large-scale identification of circular RNAs in human and other genomes. A number of computational approaches have come up in recent years to query circular RNAs on a genome-wide scale from RNA-seq data. In this chapter, we describe the application and methodology of identifying circular RNAs using three popular computational tools: FindCirc, Segemehl, and CIRI along with approaches for experimental validation of the unique splice junctions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7:155–160

    Article  CAS  PubMed  Google Scholar 

  3. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51. https://doi.org/10.1016/j.jbiotec.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  4. Qu S, Yang X, Li X et al (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148. https://doi.org/10.1016/j.canlet.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Vidal AF, Sandoval GTV, Magalhaes L et al (2016) Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics 8:551–562. https://doi.org/10.2217/epi.16.3

    Article  CAS  PubMed  Google Scholar 

  6. Kos A, Dijkema R, Arnberg AC et al (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323:558–560. https://doi.org/10.1038/323558a0

    Article  CAS  PubMed  Google Scholar 

  7. Maoz R, Garfinkel BP, Soreq H (2017) Alzheimer’s disease and ncRNAs. Adv Exp Med Biol 978:337–361. https://doi.org/10.1007/978-3-319-53889-1_18

    Article  CAS  PubMed  Google Scholar 

  8. Kumar L, Shamsuzzama, Jadiya P, et al (2018) Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol 55 6914–6926. doi: https://doi.org/10.1007/s12035-018-0903-5

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Yang J, Yang J et al (2016) Circular RNAs: novel rising stars in cardiovascular disease research. Int J Cardiol 202:726–727

    Article  PubMed  Google Scholar 

  10. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.1–11.1419. https://doi.org/10.1002/0471250953.bi1114s51

    Article  Google Scholar 

  14. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  15. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim D, Salzberg SL (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12:R72. https://doi.org/10.1186/gb-2011-12-8-r72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang K, Singh D, Zeng Z et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178. https://doi.org/10.1093/nar/gkq622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen TB, Veno MT, Damgaard CK, Kjems J (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44:e58. https://doi.org/10.1093/nar/gkv1458

    Article  PubMed  Google Scholar 

  19. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34. https://doi.org/10.1186/gb-2014-15-2-r34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4. https://doi.org/10.1186/s13059-014-0571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X-O, Wang H-B, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147. https://doi.org/10.1016/j.cell.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Dang Y, Yan L, Hu B et al (2016) Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol 17:130. https://doi.org/10.1186/s13059-016-0991-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529. https://doi.org/10.1093/bioinformatics/btw496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32:1094–1096. https://doi.org/10.1093/bioinformatics/btv656

    Article  CAS  PubMed  Google Scholar 

  26. Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44:e87. https://doi.org/10.1093/nar/gkw075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chuang T-J, Wu C-S, Chen C-Y et al (2016) NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44:e29. https://doi.org/10.1093/nar/gkv1013

    Article  CAS  PubMed  Google Scholar 

  28. Meng X, Chen Q, Zhang P, Chen M (2017) CircPro: an integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 33:3314–3316. https://doi.org/10.1093/bioinformatics/btx446

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Xie X, Zhou J et al (2017) Quantifying circular RNA expression from RNA-seq data using model-based framework. Bioinformatics 33:2131–2139. https://doi.org/10.1093/bioinformatics/btx129

    Article  CAS  PubMed  Google Scholar 

  30. Wang D (2017) hppRNA-a Snakemake-based handy parameter-free pipeline for RNA-Seq analysis of numerous samples. Brief Bioinform 19:622–626. https://doi.org/10.1093/bib/bbw143

    Article  Google Scholar 

  31. Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126. https://doi.org/10.1186/s13059-015-0690-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Izuogu OG, Alhasan AA, Alafghani HM et al (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinformatics 17:31. https://doi.org/10.1186/s12859-016-0881-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. You X, Conrad TO (2016) Acfs: accurate circRNA identification and quantification from RNA-Seq data. Sci Rep 6:38820. https://doi.org/10.1038/srep38820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Metge F, Czaja-Hasse LF, Reinhardt R, Dieterich C (2017) FUCHS-towards full circular RNA characterization using RNAseq. PeerJ 5:e2934. https://doi.org/10.7717/peerj.2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980. https://doi.org/10.1016/j.celrep.2014.10.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Scaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, D., Sehgal, P., Hariprakash, J., Sivasubbu, S., Scaria, V. (2019). Methods for Annotation and Validation of Circular RNAs from RNAseq Data. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics