Skip to main content

Modeling ncRNA-Mediated Circuits in Cell Fate Decision

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions on elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes. In this chapter, we review and summarize the general framework of mathematical modeling of ncRNA in a pedagogical way and the application of this general framework on real biological processes. We discuss the emerging properties resulting from the reciprocal regulation between mRNA, miRNA, and competing endogenous mRNA (ceRNA), as well as the role of mathematical modeling of ncRNA in synthetic biology. Both the positive feedback loops between ncRNAs and transcription factors and the emerging properties from the miRNA-mRNA reciprocal regulation enable bistable switches to direct cell fate decision.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  Google Scholar 

  2. Birney E et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  Google Scholar 

  3. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    Article  CAS  Google Scholar 

  4. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  CAS  Google Scholar 

  5. Davis GM, Haas MA, Pocock R (2015) MicroRNAs: not “fine-tuners” but key regulators of neuronal development and function. Front Neurol 6:245. https://doi.org/10.3389/fneur.2015.00245

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Ma L (2012) MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 31:653–662

    Article  CAS  Google Scholar 

  7. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3117

    Article  CAS  Google Scholar 

  8. Guo F, Kerrigan BCP, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W (2014) Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 7:19

    Article  Google Scholar 

  9. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187

    Article  CAS  Google Scholar 

  10. Shurin MR (2010) MicroRNAs are invading the tumor microenvironment: fibroblast microRNAs regulate tumor cell motility and invasiveness. Cell Cycle 9:4430–4430

    Article  CAS  Google Scholar 

  11. Bao X, Zhu X, Liao B, Benda C, Zhuang Q, Pei D, Qin B, Esteban MA (2013) MicroRNAs in somatic cell reprogramming. Curr Opin Cell Biol 25:208–214

    Article  CAS  Google Scholar 

  12. Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C (2013) MicroRNAs in pluripotency reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833:1894–1903

    Article  Google Scholar 

  13. Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    Article  CAS  Google Scholar 

  14. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159

    Article  CAS  Google Scholar 

  15. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732

    Article  CAS  Google Scholar 

  16. Tan L, Yu J-T, Tan L (2014) Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51:1249–1262

    Article  Google Scholar 

  17. Tian X-J, Zhang H, Xing J (2013) Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 105:1079–1089

    Article  CAS  Google Scholar 

  18. Zhang J, Tian X-J, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7:ra91

    Article  Google Scholar 

  19. Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E (2013) MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A 110:18144–18149

    Article  CAS  Google Scholar 

  20. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92 E2F, and Myc. Proc Natl Acad Sci U S A 105:19678–19683

    Article  CAS  Google Scholar 

  21. Sengupta D, Govindaraj V, Kar S (2017) Subtle alteration in microRNA dynamics accounts for differential nature of cellular proliferation. https://doi.org/10.1101/214429

  22. Zhou C-H, Zhang X-P, Liu F, Wang W (2014) Involvement of miR-605 and miR-34a in the DNA damage response promotes apoptosis induction. Biophys J 106:1792–1800

    Article  CAS  Google Scholar 

  23. Lai X, Wolkenhauer O, Vera J (2012) Modeling miRNA regulation in cancer signaling systems: miR-34a regulation of the p53/Sirt1 signaling module. Methods Mol Biol 880:87–108

    Article  CAS  Google Scholar 

  24. Gérard C, Gonze D, Lemaigre F, Novák B (2014) A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches. PLoS Comput Biol 10:e1003455

    Article  Google Scholar 

  25. Lee J, Lee J, Farquhar KS, Yun J, Frankenberger CA, Bevilacqua E, Yeung K, Kim E-J, Balazsi G, Rosner MR (2014) Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci U S A 111:E364–E373

    Article  CAS  Google Scholar 

  26. Milo R (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  Google Scholar 

  27. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  Google Scholar 

  28. Ferrell JE, Xiong W (2001) Bistability in cell signaling: how to make continuous processes discontinuous and reversible processes irreversible. Chaos 11:227

    Article  CAS  Google Scholar 

  29. Tyson JJ, Chen KC, Novak B (2003) Sniffers buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  Google Scholar 

  30. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    Article  Google Scholar 

  31. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773

    Article  CAS  Google Scholar 

  32. Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–129

    Article  CAS  Google Scholar 

  33. Tian X-J, Zhang X-P, Liu F, Wang W (2009) Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys Rev E Stat Nonlin Soft Matter Phys 80(1 Pt 1):011926. https://doi.org/10.1103/physreve.80.011926

    Article  PubMed  Google Scholar 

  34. Suel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB (2007) Tunability and noise dependence in differentiation dynamics. Science 315:1716–1719

    Article  Google Scholar 

  35. Brandman O (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498

    Article  CAS  Google Scholar 

  36. Zhang X-P, Cheng Z, Liu F, Wang W (2007) Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling. Phys Rev E Stat Nonlin Soft Matter PhysPhys Rev E 76(3 Pt 1):031924. https://doi.org/10.1103/physreve.76.031924

    Article  Google Scholar 

  37. Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10:4256–4271

    Article  CAS  Google Scholar 

  38. Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loopa motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677

    Article  CAS  Google Scholar 

  39. Yamakuchi M, Lowenstein CJ (2009) MiR-34 SIRT1, and p53: The feedback loop. Cell Cycle 8:712–715

    Article  CAS  Google Scholar 

  40. Rokavec M, Ö-ner MG, Li H et al (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Investig 124:1853–1867

    Article  CAS  Google Scholar 

  41. Wu H, Wang G, Wang Z, An S, Ye P, Luo S (2016) A negative feedback loop between miR-200b and the nuclear factor-κB pathway via IKBKB/IKK-β in breast cancer cells. FEBS J 283:2259–2271

    Article  CAS  Google Scholar 

  42. Lu Y-X, Yuan L, Xue X-L, Zhou M, Liu Y, Zhang C, Li J-P, Zheng L, Hong M, Li X-N (2014) Regulation of colorectal carcinoma stemness growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin Cancer Res 20:2631–2642

    Article  CAS  Google Scholar 

  43. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, Tong P, Creighton CJ, Gibbons DL (2015) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173–186

    Article  Google Scholar 

  44. Ding X, Park SI, McCauley LK, Wang C-Y (2013) Signaling between Transforming Growth Factor β (TGF-β) and Transcription Factor SNAI2 Represses Expression of MicroRNA miR-203 to Promote Epithelial-Mesenchymal Transition and Tumor Metastasis. J Biol Chem 288:10241–10253

    Article  CAS  Google Scholar 

  45. Yang X, Lin X, Zhong X et al (2010) Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res 70:9463–9472

    Article  CAS  Google Scholar 

  46. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-κB Lin28, Let-7 MicroRNA and IL6 links inflammation to cell transformation. Cell 139:693–706

    Article  CAS  Google Scholar 

  47. Pasquinelli AE (2012) MicroRNAs and their targets: recognition regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    Article  CAS  Google Scholar 

  48. Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859

    Article  CAS  Google Scholar 

  49. Tian X-J, Zhang H, Zhang J, Xing J (2016) Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions. FEBS Lett 590:3443–3455

    Article  CAS  Google Scholar 

  50. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

    Article  CAS  Google Scholar 

  51. Ortega F, Garcés JL, Mas F, Kholodenko BN, Cascante M (2006) Bistability from double phosphorylation in signal transduction. FEBS J 273:3915–3926

    Article  CAS  Google Scholar 

  52. Grande MT, Sánchez-Laorden B, López-Blau C, Frutos CAD, Boutet A, Arévalo M, Rowe RG, Weiss SJ, López-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    Article  CAS  Google Scholar 

  53. Lovisa S, LeBleu VS, Tampe BÃ et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  Google Scholar 

  54. Voon DC, Huang RY, Jackson RA, Thiery JP (2017) The EMT spectrum and therapeutic opportunities. Mol Oncol 11:878–891

    Article  Google Scholar 

  55. Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor saracatinib (AZD0530). Cell Death Dis 4:e915

    Article  CAS  Google Scholar 

  56. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY-J, Thiery JP (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6:1279–1293

    Article  CAS  Google Scholar 

  57. Figliuzzi M, Marinari E, Martino AD (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213

    Article  CAS  Google Scholar 

  58. Figliuzzi M, De Martino A, Marinari E (2014) RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 107:1011–1022

    Article  CAS  Google Scholar 

  59. Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci U S A 112:3158–3163

    Article  CAS  Google Scholar 

  60. Yuan Y, Ren X, Xie Z, Wang X (2016) A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant Biol 4:47–57

    Article  CAS  Google Scholar 

  61. Bloom RJ, Winkler SM, Smolke CD (2015) Synthetic feedback control using an RNAi-based gene-regulatory device. J Biol Eng 9:5. https://doi.org/10.1186/s13036-015-0002-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wroblewska L, Kitada T, Endo K, Siciliano V, Stillo B, Saito H, Weiss R (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat Biotechnol 33:839–841

    Article  CAS  Google Scholar 

  63. Miki K, Endo K, Takahashi S et al (2015) Efficient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell 16:699–711

    Article  CAS  Google Scholar 

  64. Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  Google Scholar 

  65. Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122:3203–3208

    Article  CAS  Google Scholar 

  66. Morel M, Shtrahman R, Rotter V, Nissim L, Bar-Ziv RH (2016) Cellular heterogeneity mediates inherent sensitivityspecificity tradeoff in cancer targeting by synthetic circuits. Proc Natl Acad Sci U S A 113:8133–8138

    Article  CAS  Google Scholar 

  67. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  Google Scholar 

  68. Fischer KR, Durrans A, Lee S et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:472–476

    Article  CAS  Google Scholar 

  69. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu C-C, LeBleu VS, Kalluri R (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–530

    Article  CAS  Google Scholar 

  70. Yoon J-H, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34:9–14

    Article  CAS  Google Scholar 

  71. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  Google Scholar 

  72. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, XJ., Ferro, M.V., Goetz, H. (2019). Modeling ncRNA-Mediated Circuits in Cell Fate Decision. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics