Skip to main content

Kinetic Modelling of Competition and Depletion of Shared miRNAs by Competing Endogenous RNAs

  • Protocol
  • First Online:
Computational Biology of Non-Coding RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Non-coding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA–RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting, e.g., the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell’s proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cech TR, Steitz JA (2014) The noncoding RNA revolution–trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  4. Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425:3582–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  CAS  PubMed  Google Scholar 

  7. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo C (2015) A dynamic search process underlies microRNA targeting. Cell 162:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein M, Chandradoss SD, Depken M, Joo C (2017) Why Argonaute is needed to make microRNA target search fast and reliable. In: Seminars in cell & developmental biology, vol. 65. Academic, New York, pp 20–28

    Google Scholar 

  9. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–60

    Article  CAS  PubMed  Google Scholar 

  10. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421

    Article  CAS  PubMed  Google Scholar 

  11. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  13. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Franks A, Airoldi E, Slavov N (2017) Post-transcriptional regulation across human tissues. PLoS Comput Biol 13:e1005535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846

    Article  CAS  PubMed  Google Scholar 

  17. Joshi A, Beck Y, Michoel T (2012) Post-transcriptional regulatory networks play a key role in noise reduction that is conserved from micro-organisms to mammals. FEBS J 279:3501–3512

    Article  CAS  PubMed  Google Scholar 

  18. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 3:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol BioSyst 5:854–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, Di Bernardo D (2013) MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 30:2364

    Article  CAS  Google Scholar 

  24. Wang S, Raghavachari S (2011) Quantifying negative feedback regulation by micro-RNAs. Phys Biol 8:055002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Das J, Chakraborty S, Podder S, Ghosh TC (2013) Complex-forming proteins escape the robust regulations of miRNA in human. FEBS Lett 587:2284–2287

    Article  CAS  PubMed  Google Scholar 

  26. Obermayer B, Levine E (2014) Exploring the miRNA regulatory network using evolutionary correlations. PLoS Comput Biol 10:e1003860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Blüthgen N, Marks DS, van Oudenaarden A (2015) MicroRNA control of protein expression noise. Science 348:128–132

    Article  CAS  PubMed  Google Scholar 

  28. Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40:248–256

    Article  CAS  PubMed  Google Scholar 

  29. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384

    Article  CAS  PubMed  Google Scholar 

  30. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721

    Article  CAS  PubMed  Google Scholar 

  31. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, Ha H, Bae JY, Kim S, Baek D (2016) General rules for functional microRNA targeting. Nat Genet 48:1517

    Article  CAS  PubMed  Google Scholar 

  34. Breda J, Rzepiela AJ, Gumienny R, van Nimwegen E, Zavolan M (2015) Quantifying the strength of miRNA-target interactions. Methods 85:90–99

    Article  CAS  PubMed  Google Scholar 

  35. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5:e229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033

    Article  CAS  PubMed  Google Scholar 

  38. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci 112:3158–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bosia C, Sgrò F, Conti L, Baldassi C, Brusa D, Cavallo F, Di Cunto F, Turco E, Pagnani A, Zecchina R (2017) RNAs competing for microRNAs mutually influence their fluctuations in a highly non-linear microRNA-dependent manner in single cells. Genome Biol 18:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7

    Article  CAS  PubMed  Google Scholar 

  46. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 22:205–215

    Article  CAS  Google Scholar 

  47. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  48. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez-Mejias A, Tay Y (2015) Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. J Hematol Oncol 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16:113

    Article  CAS  PubMed  Google Scholar 

  51. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Léopold V, Tay Y, Provero P, Zecchina R, Pandolfi PP (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci 110:7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Denzler R, McGeary SE, Agarwal V, Bartel DP, Stoffel M (2016) Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64:565–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Li Y, Xu X, Wang YH (2010) Toward a system-level understanding of microRNA pathway via mathematical modeling. Biosystems 100:31–38

    Article  PubMed  CAS  Google Scholar 

  56. Lai X, Wolkenhauer O, Vera J (2016) Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 44:6019–6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  58. Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8:e66609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noorbakhsh J, Lang AH, Mehta P (2013) Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis. PLoS One 8:e72676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Google Scholar 

  63. Martirosyan A, Figliuzzi M, Marinari E, De Martino A (2016) Probing the limits to microRNA-mediated control of gene expression. PLoS Comput Biol 12:e1004715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Flondor P, Olteanu M, Stefan R (2018) Qualitative analysis of an ODE model of a class of enzymatic reactions. Bull Math Biol 80:32–45

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez A, Choubey S, Kondev J (2013) Regulation of noise in gene expression. Annu Rev Biophys 42:469–491

    Article  CAS  PubMed  Google Scholar 

  66. Van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  67. Swain PS (2004) Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J Mol Biol 344:965–976

    Article  CAS  PubMed  Google Scholar 

  68. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  69. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  CAS  Google Scholar 

  70. Martirosyan A, Marsili M, De Martino A (2017) Translating ceRNA susceptibilities into correlation functions. Biophys J 113:206–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nitzan M, Steiman-Shimony A, Altuvia Y, Biham O, Margalit H (2014) Interactions between distant ceRNAs in regulatory networks. Biophys J 106:2254–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7(3):e1001101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bosia C, Osella M, El Baroudi M, Corá D, Caselle M (2012) Gene autoregulation via intronic microRNAs and its functions. BMC Syst Biol 6:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riba A, Bosia C, El Baroudi M, Ollino L, Caselle M (2014) A combination of transcriptional and MicroRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput Biol 10(2):e1003490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Osella M, Riba A, Testori A, Corá D, Caselle M (2014) Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet 5:345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Grigolon S, Di Patti F, De Martino A, Marinari E (2016) Noise processing by microRNA-mediated circuits: the incoherent feed-forward loop, revisited. Heliyon 2(4):e00095

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gerstein M, Kundaje A, Hariharan M, Landt S, Yan K et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bose I, Ghosh S (2012) Origins of binary gene expression in post-transcriptional regulation by microRNAs. Eur Phys J E 35:102

    Article  CAS  PubMed  Google Scholar 

  79. Tsimring L (2014) Noise in biology. Rep Prog Phys 77:026601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Samoilov M, Plyasunov S, Arkin A (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA 102(7):2310–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Del Giudice M, Bo S, Grigolon S, Bosia C (2018, in press) On the role of microRNA-mediated bimodal gene expression. PLoS Comput Biol

    Google Scholar 

  82. López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583

    Article  PubMed  CAS  Google Scholar 

  83. Mehta P, Goyal S, Wingreen NS (2008) A quantitative comparison of sRNA-based and protein-based gene regulation. Mol Syst Biol 4:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Martirosyan A, De Martino A, Pagnani A, Marinari E (2017) ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep 7:43673

    Google Scholar 

  85. Liang H, Li WH (2007) MicroRNA regulation of human protein-protein interaction network. RNA 13:1402–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y (2009) Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol 3:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sass S, Dietmann S, Burk UC, Brabletz S, Lutter D, Kowarsch A, Mayer KF, Brabletz T, Ruepp A, Theis FJ, Wang Y (2011) MicroRNAs coordinately regulate protein complexes. BMC Syst Biol 5:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hsu CW, Juan HF, Huang HC (2008) Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8:1975–1979

    Article  CAS  PubMed  Google Scholar 

  89. Du B, Wang Z, Zhang X, Feng S, Wang G, He J, Zhang B (2014) MicroRNA-545 suppresses cell proliferation by targeting cyclin D1 and CDK4 in lung cancer cells. PLoS One 9:e88022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nadal A, Jares P, Pinyol M, Conde L, Romeu C, Fernández PL, Campo E, Cardesa A (2007) Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch 450:161–167

    Article  CAS  PubMed  Google Scholar 

  91. Kwon J, Lee TS, Lee HW, Kang MC, Yoon HJ, Kim JH, Park JH (2013) Integrin alpha 6: a novel therapeutic target in esophageal squamous cell carcinoma. Int J Oncol 43:1523–1530

    Article  CAS  PubMed  Google Scholar 

  92. Tkacik G, Callan Jr CG, Bialek W (2008) Information capacity of genetic regulatory elements. Phys Rev E 78:011910

    Article  CAS  Google Scholar 

  93. Figliuzzi M, De Martino A, Marinari E (2014) RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 107:1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Detwiler PB, Ramanathan S, Sengupta A, Shraiman BI (2000) Engineering aspects of enzymatic signal transduction: photoreceptors in the retina. Biophys J 79:2801–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I (2014) A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 53:506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fiorentino J, De Martino A (2017) Independent channels for miRNA biosynthesis ensure efficient static and dynamic control in the regulation of the early stages of myogenesis. J Theor Biol 430:53–63

    Article  CAS  PubMed  Google Scholar 

  97. Mauri M, Klumpp S (2014) A model for sigma factor competition in bacterial cells. PLoS Comput Biol 10:e1003845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brewster RC, Weinert FM, Garcia HG, Song D, Rydenfelt M, Phillips R (2014) The transcription factor titration effect dictates level of gene expression. Cell 156:1312–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raveh A, Margaliot M, Sontag ED, Tuller T (2016) A model for competition for ribosomes in the cell. J R Soc Interface 13:20151062

    Article  PubMed  PubMed Central  Google Scholar 

  100. Loinger A, Shemla Y, Simon I, Margalit H, Biham O (2012) Competition between small RNAs: a quantitative view. Biophys J 102:1712–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Koller E, Propp S, Murray H, Lima W, Bhat B, Prakash TP, Allerson CR, Swayze EE, Marcusson EG, Dean NM (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res 34:4467–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pitchiaya S, Heinicke LA, Park JI, Cameron EL, Walter NG (2017) Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Rep 19:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Levine E, McHale P, Levine H (2007) Small regulatory RNAs may sharpen spatial expression patterns. PLoS Comput Biol 3:e233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Teimouri H, Korkmazhan E, Stavans J, Levine E (2017) Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria. Phys Biol 14:056001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by the European Union’s Horizon 2020 research and innovation programme MSCA-RISE-2016 under grant agreement No 734439 INFERNET. We are indebted with Matteo Figliuzzi, Enzo Marinari, Matteo Marsili and Riccardo Zecchina for our fruitful and enjoyable collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martirosyan, A., Del Giudice, M., Bena, C.E., Pagnani, A., Bosia, C., De Martino, A. (2019). Kinetic Modelling of Competition and Depletion of Shared miRNAs by Competing Endogenous RNAs. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics