Skip to main content

Integration of miRNA and mRNA Expression Data for Understanding Etiology of Gynecologic Cancers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Dysregulation of miRNA–mRNA regulatory networks is very common phenomenon in any diseases including cancer. Altered expression of biomarkers leads to these gynecologic cancers. Therefore, understanding the underlying biological mechanisms may help in developing a robust diagnostic as well as a prognostic tool. It has been demonstrated in various studies that the pathways associated with gynecologic cancer have dysregulated miRNA as well as mRNA expression. Identification of miRNA–mRNA regulatory modules may help in understanding the mechanism of altered gynecologic cancer pathways. In this regard, an existing robust mutual information-based Maximum-Relevance Maximum-Significance algorithm has been used for identification of miRNA–mRNA regulatory modules in gynecologic cancer. A set of miRNA–mRNA modules are identified first than their association with gynecologic cancer are studied exhaustively. The effectiveness of the proposed approach is compared with the existing methods. The proposed approach is found to generate more robust integrated networks of miRNA–mRNA in gynecologic cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662

    Article  CAS  Google Scholar 

  2. American Cancer Society (n.d.) https://www.cancer.org/. Accessed 13 June 2018

  3. Beezhold K, Castranova V, Chen F (2010) Microprocessor of MicroRNAs: regulation and potential for therapeutic intervention. Mol Cancer 9(134). https://doi.org/10.1186/1476-4598-9-134

    Article  Google Scholar 

  4. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091

    Article  CAS  Google Scholar 

  5. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23(1):175–205

    Article  CAS  Google Scholar 

  6. Cline MS, Craft B, Swatloski T et al (2013) Exploring TCGA Pan-Cancer data at the UCSC cancer genomics browser. Sci Rep 3(2652):1–6

    Google Scholar 

  7. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(02):185–205

    Article  CAS  Google Scholar 

  8. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, Hoboken

    Google Scholar 

  9. Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genes Dev 15(4):410–415

    Article  CAS  Google Scholar 

  10. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  Google Scholar 

  11. Huang T, Cai YD (2013) An information-theoretic machine learning approach to expression QTL analysis. PLoS One 8(6):1–9

    CAS  Google Scholar 

  12. Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98

    Article  CAS  Google Scholar 

  13. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of MicroRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    Article  CAS  Google Scholar 

  14. Kutmon M, Riutta A, Nunes N et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44(D1):D488

    Article  CAS  Google Scholar 

  15. Li J, Liu Y, Wang C et al (2015) Serum miRNA expression profile as a prognostic biomarker of stage II/III colorectal adenocarcinoma. Sci Rep 5(12921). https://doi.org/10.1038/srep12921

  16. Maji P (2012) Mutual information-based supervised attribute clustering for microarray sample classification. IEEE Trans Knowl Data Eng 24(1):127–140

    Article  Google Scholar 

  17. Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 52(3):408–426

    Article  Google Scholar 

  18. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating MicroRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105(30):10513–10518

    Article  CAS  Google Scholar 

  19. Paul S, Maji P (2016) Gene expression and protein-protein interaction data for identification of colon cancer related genes using f-information measures. Nat Comput 15(3):449–463

    Article  CAS  Google Scholar 

  20. Quitadamo A, Tian L, Hall B et al (2015) An integrated network of MicroRNA and gene expression in ovarian cancer. BMC Bioinf 16(5):S5

    Article  Google Scholar 

  21. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28(10):1353

    Article  CAS  Google Scholar 

  22. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  23. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447

    Article  CAS  Google Scholar 

  24. Yu G, Wang LG, Yan GR et al (2015) DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31(4):608

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the seed grant program of the Indian Institute of Technology Jodhpur, India (grant no. I/SEED/SPU/20160010). The author wants to acknowledge Mr. Shubham Talbar, Indian Institute of Technology Jodhpur, India for his contribution in implementing certain bioinformatics tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paul, S. (2019). Integration of miRNA and mRNA Expression Data for Understanding Etiology of Gynecologic Cancers. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics