Skip to main content

Controllability Methods for Identifying Associations Between Critical Control ncRNAs and Human Diseases

  • Protocol
  • First Online:
Computational Biology of Non-Coding RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Human diseases are not only associated to mutations in protein-coding genes. Contrary to what was thought decades ago, the human genome is largely transcribed which generates a large amount of nonprotein-coding RNAs (ncRNAs). Interestingly, these ncRNAs are not only able to perform biological functions and interact with other molecules such as proteins, but also have been reported involved in human diseases. In this book chapter, we review the recent research done on controllability methods related to associations between ncRNAs and human diseases. First, we introduce the bipartite complex network resulting from the interactions of ncRNAs and proteins. We then explain the theoretical background of controllability algorithms and apply these methods to the problem of identifying ncRNAs with critical roles in network control. Then, by performing statistical analyses we can answer the question on whether the subset of critical control ncRNAs is also enriched by human diseases. In addition, we review three-layer network models for prediction of ncRNA-disease associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins LJ (2011) The RNA infrastructure: an introduction to ncRNA networks. Landes Bioscience and Springer Science+Business Media

    Google Scholar 

  2. Collins LJ, Penny D (2009) RNA-infrastructure: dark matter of the eukaryotic cell? Trends Genet 25(3):120–128

    Article  CAS  Google Scholar 

  3. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 1:R17–R29

    Article  Google Scholar 

  4. Gesteland RF, Cech TR, Atkins JF (2006) The RNA World, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  5. Pang KC, Stephen S, Engström PG, Tajul-Arifin K, Chen W, Wahlestedt C, Lenhard B, Hayashizaki Y, Mattick JS (2005) RNAdb—a comprehensive mammalian non-coding RNA database. Nucleic Acids Res 33(database issue):D125–D130

    Article  CAS  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  Google Scholar 

  7. Makeyev EV, Maniatis T (2008) Multilevel regulation of gene expression by MicroRNAs. Science 319:1789–1790

    Article  CAS  Google Scholar 

  8. Royo H, Cavaille J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100(3):149–166

    Article  CAS  Google Scholar 

  9. Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327(5964):425–431

    Article  CAS  Google Scholar 

  10. Collins LJ, Chen XS, Schonfeld B (2010) The epigenetics of non-coding RNA. In: Tollefsbol T (ed) Handbook of epigenetics. Academic Press, Oxford, pp 49–61

    Google Scholar 

  11. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125

    Article  CAS  Google Scholar 

  12. He L et al (2005) A microRNA plycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  Google Scholar 

  13. Volinia S et al (2006) A microRNA expression signature of human solid tumors define gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  CAS  Google Scholar 

  14. Medina PP, Slack FJ (2008) MicroRNAs and cancer: an overview. Cell Cycle 7:2485–2492

    Article  CAS  Google Scholar 

  15. Drakaki A, Iliopoulos D (2009) MicroRNA gene networks in oncogenesis. Curr Genomics 10:35–41

    Article  CAS  Google Scholar 

  16. Roberts APE, Lewis AP, Jopling CL (2011) The role of microRNAs in viral infection. Prog Mol Biol Transl Sci 102:101–139

    Article  CAS  Google Scholar 

  17. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  Google Scholar 

  18. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  Google Scholar 

  19. van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376

    Article  Google Scholar 

  20. Poy MN, Spranger M, Stoffel M (2007) MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9:67–73

    Article  CAS  Google Scholar 

  21. Lu M et al (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420

    Article  Google Scholar 

  22. Van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11:860–872

    Article  Google Scholar 

  23. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  Google Scholar 

  24. Yuan J et al (2014) NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res 42:D104–D108

    Article  CAS  Google Scholar 

  25. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473:167–173

    Article  CAS  Google Scholar 

  26. Nacher JC, Akutsu T (2012) Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control. New J Phys 14:073005

    Article  Google Scholar 

  27. Nacher JC, Akutsu T (2014) Analysis of critical and redundant nodes in controlling directed and undirected complex networks using dominating sets. J Complex Networks 2:394–412

    Article  Google Scholar 

  28. Nacher JC, Akutsu T (2013) Structural controllability of unidirectional bipartite networks. Sci Rep 3:1647

    Article  CAS  Google Scholar 

  29. Molnár F, Sreenivasan S, Szymanski BK, Korniss G (2013) Minimum dominating sets in scale-free network ensembles. Sci Rep 3:1736

    Article  Google Scholar 

  30. Wuchty S (2014) Controllability in protein interaction networks. Proc Natl Acad Sci U S A 111:7156–7160

    Article  CAS  Google Scholar 

  31. Sun PG (2015) Co-controllability of drug-disease-gene network. New J Phys 17:085009

    Article  Google Scholar 

  32. Khuri S, Wuchty S (2015) Essentiality and centrality in protein interaction networks. BMC Bioinformatics 16:109

    Article  Google Scholar 

  33. Zhang X-F, Ou-Yang L, Zhu Y, Wu M-Y, Dai D-Q (2015) Determining minimum set of driver nodes in protein-protein interaction networks. BMC Bioinformatics 16:146

    Article  Google Scholar 

  34. Ishitsuka M, Akutsu T, Nacher JC (2016) Critical controllability in proteome-wide protein interaction network integrating transcriptome. Sci Rep 6:23541

    Article  CAS  Google Scholar 

  35. Zhang X-F et al (2016) Comparative analysis of housekeeping and tissue-specific driver nodes in human protein interaction networks. BMC Bioinformatics 17:358

    Article  Google Scholar 

  36. Nacher JC, Akutsu T (2016) Minimum dominating set-based methods for analyzing biological networks. Methods 102:57–63

    Article  CAS  Google Scholar 

  37. Jia T et al (2013) Emergence of bimodality in controlling complex networks. Nat Commun 4:2002

    Article  Google Scholar 

  38. Li Y et al (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074

    Article  CAS  Google Scholar 

  39. Rossi S et al (2011) OMiR: identification of associations between OMIM diseases and microRNAs. Genomics 97:71–76

    Article  CAS  Google Scholar 

  40. Kagami H, Akutsu T, Nacher JC (2015) Determining associations between human diseases and non-coding RNAs with critical roles in network control. Sci Rep 5:14577

    Article  CAS  Google Scholar 

  41. Alaimo S, Giugno R, Pulvirenti A (2014) ncPred: ncRNA-disease association prediction through tripartite network-based inference. Front Bioeng Biotechnol 2:71

    Article  Google Scholar 

  42. Mori T, Ngouv H, Hayashida M, Akutsu T, Nacher JC (2018) ncRNA-disease association prediction based on sequence information and tripartite network. BMC Syst Biol 12(Suppl 1):37

    Article  Google Scholar 

  43. Zhu JJ, Fu HJ, Wu YG, Zheng XF (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56:876–885

    Article  CAS  Google Scholar 

  44. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  Google Scholar 

  45. Madamanchi NR et al (2002) A noncoding RNA regulates human protease activated receptor-1 gene during embryogenesis. Biochim Biophys Acta 1576(3):237–245

    Article  CAS  Google Scholar 

  46. Colombo T, Farina L, Macino G, Paci P (2015) PVT1: a rising star among oncogenic long noncoding RNAs. BioMed Res Int 2015:304208 10 pp

    Article  Google Scholar 

  47. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.C.N. was partially supported by JSPS KAKENHI Grant Number JP25330351, and T.A. was partially supported by JSPS KAKENHI Grant Number 26540125. This research was partially supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose C. Nacher or Tatsuya Akutsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nacher, J.C., Akutsu, T. (2019). Controllability Methods for Identifying Associations Between Critical Control ncRNAs and Human Diseases. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics