Skip to main content

Detection of Antibodies to HCV E1E2 by Lectin-Capture ELISA

  • Protocol
  • First Online:
Hepatitis C Virus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1911))

Abstract

Enzyme-linked immunosorbent assays (ELISAs) enable rapid detection and quantitation of antibodies in samples. Such assays can be highly sensitive and can be performed in most laboratories with basic equipment. Although detecting binding antibodies to the surface proteins of most pathogens by ELISA is not always indicative of antibody function, i.e., neutralizing activity of antibodies, the results can be used as a first step toward more in-depth analysis of antibody responses. Here we describe a method that can be used to standardize ELISAs for the detection of HCV envelope antibodies across laboratories and provide adaptations of the method to further characterize antibody responses in serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logvinoff C, Major ME, Oldach D, Heyward S, Talal A, Balfe P et al (2004) Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci U S A 101:10149–10154

    Article  CAS  Google Scholar 

  2. Pestka JM, Zeisel MB, Blaser E, Schurmann P, Bartosch B, Cosset FL et al (2007) Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci U S A 104:6025–6030

    Article  CAS  Google Scholar 

  3. Dowd KA, Netski DM, Wang XH, Cox AL, Ray SC (2009) Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology 136:2377–2386

    Article  CAS  Google Scholar 

  4. Osburn WO, Snider AE, Wells BL, Latanich R, Bailey JR, Thomas DL et al (2014) Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 59:2140–2151

    Article  CAS  Google Scholar 

  5. Houghton M, Abrignani S (2005) Prospects for a vaccine against the hepatitis C virus. Nature 436:961–966

    Article  CAS  Google Scholar 

  6. Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z et al (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14:25–27

    Article  CAS  Google Scholar 

  7. Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM et al (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276

    Article  CAS  Google Scholar 

  8. Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL et al (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79:11095–11104

    Article  CAS  Google Scholar 

  9. Keck Z, Wang W, Wang Y, Lau P, Carlsen TH, Prentoe J et al (2013) Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein. J Virol 87:37–51

    Article  CAS  Google Scholar 

  10. Wong JA, Bhat R, Hockman D, Logan M, Chen C, Levin A et al (2014) Recombinant hepatitis C virus envelope glycoprotein vaccine elicits antibodies targeting multiple epitopes on the envelope glycoproteins associated with broad cross-neutralization. J Virol 88:14278–14288

    Article  Google Scholar 

  11. Helle F, Wychowski C, Vu-Dac N, Gustafson KR, Voisset C, Dubuisson J (2006) Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans. J Biol Chem 281:25177–25183

    Article  CAS  Google Scholar 

  12. Kachko A, Loesgen S, Shahzad-Ul-Hussan S, Tan W, Zubkova I, Takeda K et al (2013) Inhibition of hepatitis C virus by the cyanobacterial protein MVL: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm 10:4590–4602

    Article  CAS  Google Scholar 

  13. Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G et al (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77:4070–4080

    Article  CAS  Google Scholar 

  14. Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T et al (2013) Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One 8:e64449

    Article  CAS  Google Scholar 

  15. Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G et al (1994) Vaccination of chimpanzees against infection by the hepatitis C virus. Proc Natl Acad Sci U S A 91:1294–1298

    Article  CAS  Google Scholar 

  16. Puig M, Major ME, Mihalik K, Yu MY, Feinstone SM (2004) Immunization of chimpanzees with an envelope protein-based vaccine enhances specific humoral and cellular immune responses that delay hepatitis C virus infection. Vaccine 22:991–1000

    Article  CAS  Google Scholar 

  17. Khan AG, Whidby J, Miller MT, Scarborough H, Zatorski AV, Cygan A et al (2014) Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509:381–384

    Article  CAS  Google Scholar 

  18. Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE, Hua Y et al (2013) Hepatitis C virus E2 envelope glycoprotein core structure. Science 342:1090–1094

    Article  CAS  Google Scholar 

  19. Whidby J, Mateu G, Scarborough H, Demeler B, Grakoui A, Marcotrigiano J (2009) Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol 83:11078–11089

    Article  CAS  Google Scholar 

  20. Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    Article  CAS  Google Scholar 

  21. Michalak JP, Dubuisson J, Rice CM, Ung S, Meunier JC, Choukhi A et al (1997) Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78:2299–2306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Food and Drug Administration intramural funds [Program Number Z01 BK 04010-11 LHV to M.M.] and by the National Institutes of Health [grant numbers AI079037, AI106005 and AI123861 to M.L.]. We thank Yusra Gimie and Kenna Nagy for comments and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Major .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Major, M., Law, M. (2019). Detection of Antibodies to HCV E1E2 by Lectin-Capture ELISA. In: Law, M. (eds) Hepatitis C Virus Protocols . Methods in Molecular Biology, vol 1911. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8976-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8976-8_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8975-1

  • Online ISBN: 978-1-4939-8976-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics