Skip to main content

A Binding Potency Assay for Pritumumab and Ecto-Domain Vimentin

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Pritumumab, a natural human IgG1kappa mAb, was isolated from the regional lymph node of a patient with cervical cancer. This antibody has been reported to bind the cytoskeletal protein vimentin, and to cell surface expressed vimentin referred to as ecto-domain vimentin (EDV). Here, we report details of the development of a potency of binding assay for pritumumab as a prerequisite before pursuing clinical trials. The enzyme linked immunosorbent assay (ELISA) to detect antibody-binding antigen can serve as a potency assay for release of manufactured samples to be used in clinical studies. Several layers of controls for this assay along with suitability testing for reagents and components of the assay must be developed before the assay can be incorporated for stability testing and release of manufatured samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glassy MC, Handley HH, Hagiwara H, Royston I (1983) UC 729-6, a human lymphoblastoid B cell line useful for generating antibody secreting human-human hybridomas. Proc Natl Acad Sci U S A 80:6327–6331

    Article  CAS  Google Scholar 

  2. Glassy MC, Hagiwara H (2009) Summary analysis of the pre-clinical and clinical results of brain tumor patients treated with pritumumab. Hum Antibodies 18:127–137

    Article  CAS  Google Scholar 

  3. Babic I, Nurmammadov E, Yenugonda V, Juarez T, Nomura N, Pingle SC, MC G, Kesari S (2017) Pritumumab, the first therapeutic antibody for glioma patients. Hum Antibodies 26:95–101

    Article  Google Scholar 

  4. Glassy MC, Gupta R (2013) Technical and ethical limitations in making human monoclonal antibodies, chapter 2. In: Steinitz M (ed) Springer protocols, Methods in molecular biology, vol 1060. Humana Press, New York, pp 9–30

    Google Scholar 

  5. Glassy MC, McKnight ME (1993) A novel drug discovery programme utilizing the human immune response. Curr Opin Investig Drugs 2:853–858

    Google Scholar 

  6. Glassy MC, McKnight ME (1994) Pharming the human lymph node. Expert Opin Investig Drugs 3:1057

    Article  Google Scholar 

  7. Gupta R, York D, Kotlan B, Bleck G, Glassy E, Glassy M (2013) Use of the Gpex® system to increase production of Pritumumab in a CHO cell line. J Bioprocess Technol Photon 98:318–326

    Google Scholar 

  8. Aotsuka Y, Hagiwara H (1988) Identification of a malignant cell associated antigen recognized by a human monoclonal antibody. Eur J Cancer 24(5):829–838

    Article  CAS  Google Scholar 

  9. Kokunai T, Tamaki N, Matsumoto S (1990) Antigen related to cell proliferation in malignant gliomas recognized by a human monoclonal antibody. J Neurosurg 73(6):901–908

    Article  CAS  Google Scholar 

  10. Hagiwara H, Aotsuka Y, Yamamoto Y, Miyahara J, Mitoh Y (2001) Determination of the antigen/epitope that is recognized by human monoclonal antibody CLN-IgG. Hum Antibodies 10:77–82

    Article  CAS  Google Scholar 

  11. AV H, Glassy MC (2017) Idiotypic antibody network regarding malignant cell regression in the brain tumor patients treated with the natural human monoclonal antibody, Pritumumab. Integr Canc Biol Res 1:003

    Google Scholar 

  12. Kokunai T (2002) Anti-TA226 human monoclonal antibody (ACA-11) against glioma. Nihon Rinsho 60(1):100–106

    PubMed  Google Scholar 

  13. Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    Article  CAS  Google Scholar 

  14. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    Article  CAS  Google Scholar 

  15. Chernyatina AA, Nicolet S, Aebi U, Hermann H, Strelkov SK (2012) Atomic structure of the vimentin central a-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci 109:13620–13625

    Article  CAS  Google Scholar 

  16. Apostolou E, Hochdlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–469

    Article  CAS  Google Scholar 

  17. Franke WW, Franke WW, Appelhans B, Schmid E, Freudenstein C, Osborn M, Weber K (1979) Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin. Differentiation 15(1):7–25

    Article  CAS  Google Scholar 

  18. Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24(6):1838–1851

    Article  CAS  Google Scholar 

  19. Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Gordon Bryden AA, Villette JM, Stower MJ, Maitiand NJ (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52(4):253–263

    Article  CAS  Google Scholar 

  20. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    Article  CAS  Google Scholar 

  21. Mitra A, Satelli A, Xia XQ, Xia CJ, Mishra L, Li SL (2015) Cell-surface vimentin: a mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers. Int J Cancer 137(2):491–496

    Article  CAS  Google Scholar 

  22. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046

    Article  CAS  Google Scholar 

  23. Weidle UH, Maisel D, Klostermann S, Schiller C, Weiss EH (2011) Intracellular proteins displayed on the surface of tumor cells as targets for therapeutic intervention with antibody-related agents. Cancer Genomics Proteomics 8(2):49–63

    CAS  PubMed  Google Scholar 

  24. Li H, Meng QH, Noh H, Somaiah N, Torres KE, Xia X, Batth IS, Joseph CP, Liu M, Wang R, Li S (2018) Cell-surface vimentin-positive macrophage-like circulating tumor cells as a novel biomarker of metastatic gastrointestinal stromal tumors. Oncoimmunology 7(5):e1420450. https://doi.org/10.1080/2162402X.2017.1420450. eCollection 2018

    Article  PubMed  Google Scholar 

  25. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5:59–63

    Article  CAS  Google Scholar 

  26. Pall T, Pink A, Kasak L, Turkina M, Anderson W, Valkna A, Kogerman P (2011) Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface. PLoS One 6:e29305

    Article  CAS  Google Scholar 

  27. Satelli A, Hu J, Xia X, Li S (2016) Potential function of exogenous vimentin on the activation of Wnt signaling pathway in cancer cells. J Cancer 7:1824–1832

    Article  CAS  Google Scholar 

  28. Liu TA, Jan YJ, Ko BS, Liang SM, Chen SC, Wang J, Hsu C, Wu YM, Liou J-Y (2013) 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. PLoS One 8:e57968

    Article  CAS  Google Scholar 

  29. Sutoh-Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, Wiche G, Oyama C, Tsuboi S (2014) Vimentin intermediate filament and plectin provide a scaffold for invadopodia, faciliating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol 93:157–169

    Article  CAS  Google Scholar 

  30. Zhang MH, Lee JS, Kim HJ, Jin DI, Kim JI, Lee KJ, Seo JS (2006) HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 281:111–121

    Article  CAS  Google Scholar 

  31. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science 338:956–959

    Article  CAS  Google Scholar 

  32. Rogel MR, Soni PN, Troken JR, Sitikov A, Trejo HE, Ridge KM (2011) Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB J 25:3873–3883

    Article  CAS  Google Scholar 

  33. Glaser-Gaby L, Raiter A, Battler A, Hardy B (2011) Endothelial cell surface vimentin binding peptide induces angiogenesis under hypoxic/ischemic conditions. Microvasc Res 82:221–226

    Article  Google Scholar 

  34. Thiagarajan PS, Yakubenko VP, Elsori DH, Yadav SP, Willard B, Tan CD, Rodoriguez ER, Febbraio M, Cathcart MK (2013) Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1. Cardiovasc Res 99:494–504

    Article  CAS  Google Scholar 

  35. Henderson P, Wilson DC, Satsangi J, Stevens C (2012) A role for vimentin in chrohns disease. Autophagy 8:1695–1696

    Article  CAS  Google Scholar 

  36. Ambrose J, Livitz M, Wessels D, Kuhl S, Lusche DF, Scherer A, Voss E, Soll DR (2015) Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. Am J Cancer Res 5:3485–3504

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brentvill VA, Metheringham RL, Gunn B, Symonds P, Daniels I, Gijon M, Cook K, Xue W, Durrant LG (2016) Citrullinated vimentin presented on MHC-II in tumor cells is a target for CD4+ T-cell-mediated antitumor immunity. Cancer Res 76:548–560

    Article  Google Scholar 

  38. Bay-Jensen AC, Karsdal MA, Vassiliadis E, Wichuk S, Marcher-Mikkelsen K, Lories R, Christiansen C, Maksymowych WP (2013) Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum 65:972–980

    Article  CAS  Google Scholar 

  39. Planey SL, Keay SK, Zhang CO, Zacharias DA (2009) Palimitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling. Am Soci Cell Biol 20:1456–1463

    Google Scholar 

  40. Yasui Y, Goto H, Matsui S, Manser E, Lim L, Nagata K, Inagaki M (2001) Protein kinase required for segregation of vimentin filaments in mitotic process. Oncogene 20:2868–2876

    Article  CAS  Google Scholar 

  41. Wang L, Zhang J, Banerjee S, Barnes L, Sajja V, Liu Y, Guo B, Du Y, Agarmal MK, Wald DN, Wang Q, Yang J (2010) Sumoylation of vimentin354 is associated with PIAS3 inhibition of glioma cell migration. Oncotarget 1:620–627

    PubMed  PubMed Central  Google Scholar 

  42. Hugwil AV (2015) Antigenicity of the tumor-associated antigen vimentin epitope on ectosomes of brain tumor cell. Int J Cancer Res Dev 1:7–13

    Google Scholar 

  43. Da Q, Behymer M, Correa JI, Vijayan V, Cruz MA (2014) Platelet adhesion involves a novel interaction between vimentin and von Willebrand factor under high shear stress. Blood 123:2715–2721

    Article  CAS  Google Scholar 

  44. Glassy MC, Koda K (2002) The nature of an ideal therapeutic human antibody. Expert Opin Biol Ther 2:1–2

    Article  Google Scholar 

  45. Lowery J, Guo M, Weitz DA, Kuezmarski E, Goldman RD (2016) Methods for determining the cellular function of vimentin intermidiate filaments. Methods Enzymol 568:391–421

    Google Scholar 

  46. Lam FW, Da Q, Guillory B, Cruz MA (2018) Recombinant human vimentin binds to P-selectin and blocks neutrophil capture and rolling on platelets and entothelium. J Immunol 200:1718–1726

    CAS  PubMed  Google Scholar 

  47. Mukerjee S, McKnight M, Glassy M (1998) Immnoscreening protocols for the identification of clinically useful antibodies and antigens. Expert Opin Investig Drugs 7:373–389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Babic, I., Kesari, S., Glassy, M.C. (2019). A Binding Potency Assay for Pritumumab and Ecto-Domain Vimentin. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics