Skip to main content

Methods to Quantify the NF-κB Pathway During Senescence

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1896))

Abstract

Nuclear factor κB (NF-κB) is a family of transcription factors important for regulating innate and adaptive immunity, cellular proliferation, apoptosis and senescence. The NF-κB family is comprised of five subunits, RelA/p65, RelB, C-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). NF-κB activity goes up with age in multiple tissues. The two subunits RelA/p65 and p50 have been implicated in senescence and aging with genetic deletion of p65 and p50 reducing or increasing senescence respectively. Pharmacologic inhibition of NF-κB also extends health span and reduces senescence in mouse models of accelerated aging. In addition, NF-κB regulates expression of many of senescence associated secretory phenotype (SASP) factors released by certain types of senescent cells that drives loss of tissue homeostasis and secondary senescence. To measure NF-κB activity with aging in vivo, multiple methods can and need to be utilized including cellular localization of p65, EMSA analysis of NF-κB DNA binding, RNA in situ hybridization, and analysis of expression of NF-κB target genes. To colocalize NF-κB activation and senescence, p65 localization or transcriptional activity can be measured by immunostaining or RNA in situ hybridization for NF-κB regulated genes along with methods such as immunostaining for γH2AX or RNA in situ for senescence markers like p16INK4a and p21. These and related methods will be described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47(6):921–928

    Article  CAS  Google Scholar 

  2. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168(1):37–57

    Article  CAS  Google Scholar 

  3. Salminen A, Kaarniranta K (2009) NF-κB signaling in the aging process. J Clin Immunol 29(4):397–405

    Article  CAS  Google Scholar 

  4. Osorio FG, Soria-Valles C, Santiago-Fernández O, Freije JMP, López-Otín C (2016) NF-κB signaling as a driver of ageing. Int Rev Cell Mol Biol 326:133–174

    Article  CAS  Google Scholar 

  5. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NF-κB in aging and disease. Aging Dis 2(6):449–465

    PubMed  PubMed Central  Google Scholar 

  6. Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186

    Article  Google Scholar 

  7. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362

    Article  CAS  Google Scholar 

  8. Perkins ND (2007) Integrating cell-signalling pathways with NF-[kappa]B and IKK function. Nat Rev Mol Cell Biol 8(1):49–62

    Article  CAS  Google Scholar 

  9. Sun S-C (2011) Non-canonical NF-[kappa]B signaling pathway. Cell Res 21(1):71–85

    Article  CAS  Google Scholar 

  10. Kriete A, Mayo KL (2009) Atypical pathways of NF-κB activation and aging. Exp Gerontol 44(4):250–255

    Article  CAS  Google Scholar 

  11. Siomek A (2012) NF-kappaB signaling pathway and free radical impact. Acta Biochim Pol 59(3):323–331

    Article  CAS  Google Scholar 

  12. Kato T, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12(4):829–839

    Article  CAS  Google Scholar 

  13. Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M, Piette J (2000) Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IκBα in NF-κB activation by an oxidative stress. J Immunol 164(8):4292–4300

    Article  CAS  Google Scholar 

  14. Miyamoto S (2011) Nuclear initiated NF-[kappa]B signaling: NEMO and ATM take center stage. Cell Res 21(1):116–130

    Article  CAS  Google Scholar 

  15. Salminen A, Suuronen T, Huuskonen J, Kaarniranta K (2008) NEMO shuttle: a link between DNA damage and NF-κB activation in progeroid syndromes? Biochem Biophys Res Commun 367(4):715–718

    Article  CAS  Google Scholar 

  16. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  Google Scholar 

  17. Amiri KI, Richmond A (2005) Role of nuclear factor-κ B in melanoma. Cancer Metastasis Rev 24(2):301–313

    Article  CAS  Google Scholar 

  18. Helenius M, Hänninen M, Lehtinen SK, Salminen A (1996) Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B. Biochem J 318. (Pt 2:603–608

    Article  CAS  Google Scholar 

  19. Helenius M, Hänninen M, Lehtinen SK, Salminen A (1996) Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NF-kB transcription factor in mouse cardiac muscle. J Mol Cell Cardiol 28(3):487–498

    Article  CAS  Google Scholar 

  20. Korhonen P, Helenius M, Salminen A (1997) Age-related changes in the regulation of transcription factor NF-κB in rat brain. Neurosci Lett 225(1):61–64

    Article  CAS  Google Scholar 

  21. Spencer NF, Poynter ME, Im SY, Daynes RA (1997) Constitutive activation of NF-kappa B in an animal model of aging. Int Immunol 9(10):1581–1588

    Article  CAS  Google Scholar 

  22. Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor-κB Signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273(49):32833–32841

    Article  CAS  Google Scholar 

  23. Adler AS, Sinha S, Kawahara TLA, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev 21(24):3244–3257

    Article  CAS  Google Scholar 

  24. Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C (2004) Involvement of Rel/nuclear factor-κB transcription factors in keratinocyte senescence. Cancer Res 64(2):472–481

    Article  CAS  Google Scholar 

  25. Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA (2000) Nuclear factor κB subunits induce epithelial cell growth arrest. Cancer Res 60(15):4085–4092

    CAS  PubMed  Google Scholar 

  26. Zhi H, Yang L, Kuo Y-L, Ho Y-K, Shih H-M, Giam C-Z (2011) NF-κB hyper-activation by HTLV-1 tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathog 7(4):e1002025

    Article  CAS  Google Scholar 

  27. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006) Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25:6781

    Article  CAS  Google Scholar 

  28. Pasparakis M, Luedde T, Schmidt-Supprian M (2006) Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ 13:861

    Article  CAS  Google Scholar 

  29. Cartwright T, Perkins ND, Wilson CL (2016) NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 283(10):1812–1822

    Article  CAS  Google Scholar 

  30. Sha WC, Liou HC, Tuomanen EI, Baltimore D (1995) Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80(2):321–330

    Article  CAS  Google Scholar 

  31. Bernal GM, Wahlstrom JS, Crawley CD, Cahill KE, Pytel P, Liang H, Kang S, Weichselbaum RR, Yamini B (2014) Loss of Nfkb1 leads to early onset aging. Aging (Albany NY) 6(11):931–943

    Article  Google Scholar 

  32. Carrero D, Soria-Valles C, López-Otín C (2016) Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 9(7):719–735

    Article  CAS  Google Scholar 

  33. Vermeij WP, Hoeijmakers JHJ, Pothof J (2016) Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol 56(1):427–445

    Article  CAS  Google Scholar 

  34. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GTJ, Meinecke P, Kleijer WJ, Vijg J, Jaspers NGJ, Hoeijmakers JHJ (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038

    Article  CAS  Google Scholar 

  35. Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122(7):2601–2612

    Article  CAS  Google Scholar 

  36. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063

    Article  CAS  Google Scholar 

  37. Osorio FG, Obaya ÁJ, López-Otín C, Freije JMP (2009) Accelerated ageing: from mechanism to therapy through animal models. Transgenic Res 18(1):7–15

    Article  CAS  Google Scholar 

  38. Pendás AM, Zhou Z, Cadiñanos J, Freije JMP, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodríguez F, Tryggvason K, López-Otín C (2002) Defective prelamin a processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase–deficient mice. Nat Genet 31:94

    Article  Google Scholar 

  39. Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, Depetris D, de Carlos F, Cobo J, Andrés V, De Sandre-Giovannoli A, Freije JMP, Lévy N, López-Otín C (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107

    Article  Google Scholar 

  40. Osorio FG, Bárcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JMP, López-Otín C (2012) Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26(20):2311–2324

    Article  CAS  Google Scholar 

  41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Robbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, L., Zhao, J., Gurkar, A., Niedernhofer, L.J., Robbins, P.D. (2019). Methods to Quantify the NF-κB Pathway During Senescence. In: Demaria, M. (eds) Cellular Senescence. Methods in Molecular Biology, vol 1896. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8931-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8931-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8930-0

  • Online ISBN: 978-1-4939-8931-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics