Skip to main content

Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development

  • Protocol
  • First Online:
The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

The HIPPO signaling pathway plays an early and essential role in mammalian embryogenesis. The earliest known roles for HIPPO signaling during mouse development include segregating fetal and extraembryonic lineages and establishing the pluripotent progenitors of embryonic stem (ES) cells. In the mouse early embryo, HIPPO signaling responds to multiple cell biological inputs, including cell polarization, cytoskeleton, and cell environment, to influence gene expression and the first cell fate decisions in development. Methods to monitor and manipulate HIPPO signaling in the mouse early embryo are fundamental to discovering mechanisms regulating pluripotency in vivo, but properties of the early embryo, such as small cell number and spherical architecture, pose unique challenges for signaling pathway analysis. Here, we share approaches for visualizing HIPPO signaling in mouse early embryos. In addition, these methods can be applied to visualize HIPPO signaling in other spherical or cystic structures comprised of relatively few cells, such as organoids, or for the examination of other signaling pathways in these contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu V, Plouffe SW, Guan KL (2018) The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 49:99–107. https://doi.org/10.1016/j.ceb.2017.12.012

    Article  CAS  PubMed Central  Google Scholar 

  2. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828. https://doi.org/10.1016/j.cell.2015.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  4. Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79. https://doi.org/10.1038/nrd4161

    Article  CAS  PubMed  Google Scholar 

  5. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505. https://doi.org/10.1016/j.devcel.2010.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharif AAD, Hergovich A (2018) The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 48:104–114. https://doi.org/10.1016/j.semcancer.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  7. Yimlamai D, Fowl BH, Camargo FD (2015) Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. J Hepatol 63(6):1491–1501. https://doi.org/10.1016/j.jhep.2015.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803. https://doi.org/10.1016/j.ccell.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossant J, Lis WT (1979) Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev Biol 70(1):255–261

    Article  CAS  PubMed  Google Scholar 

  10. Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322(1):133–144. https://doi.org/10.1016/j.ydbio.2008.07.019

    Article  CAS  PubMed  Google Scholar 

  11. Tarkowski AK, Suwinska A, Czolowska R, Ozdzenski W (2010) Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol 348(2):190–198. https://doi.org/10.1016/j.ydbio.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  12. McDole K, Xiong Y, Iglesias PA, Zheng Y (2011) Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 355(2):239–249. https://doi.org/10.1016/j.ydbio.2011.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toyooka Y, Oka S, Fujimori T (2016) Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes. Dev Biol 411(1):50–60. https://doi.org/10.1016/j.ydbio.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  14. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. https://doi.org/10.1016/j.devcel.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394(1):142–155. https://doi.org/10.1016/j.ydbio.2014.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23(13):1195–1201. https://doi.org/10.1016/j.cub.2013.05.044

    Article  CAS  PubMed  Google Scholar 

  17. Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23(13):1181–1194. https://doi.org/10.1016/j.cub.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251. https://doi.org/10.1038/ncomms3251

    Article  CAS  PubMed  Google Scholar 

  19. Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536(7616):344–348. https://doi.org/10.1038/nature18958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395–403. https://doi.org/10.1242/dev.038828

    Article  CAS  PubMed  Google Scholar 

  21. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283. https://doi.org/10.1016/j.mod.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  22. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102. https://doi.org/10.1242/dev.01801

    Article  CAS  PubMed  Google Scholar 

  23. Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A (2014) HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet 10(10):e1004618. https://doi.org/10.1371/journal.pgen.1004618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140. https://doi.org/10.1101/gad.224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S (2009) GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284(42):28729–28737. https://doi.org/10.1074/jbc.M109.016840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma GT, Roth ME, Groskopf JC, Tsai FY, Orkin SH, Grosveld F, Engel JD, Linzer DI (1997) GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124(4):907–914

    CAS  PubMed  Google Scholar 

  27. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118. https://doi.org/10.1101/gad.1903310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2016) Selecting female mice in estrus and checking plugs. Cold Spring Harb Protoc 2016(8). https://doi.org/10.1101/pdb.prot092387

    Article  Google Scholar 

  29. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

Work in our lab is supported by National Institutes of Health grant R01 GM104009 and the James K. Billman, Jr., M.D. Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Ralston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frum, T., Ralston, A. (2019). Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics