Skip to main content

Luciferase Reporter Assays to Determine YAP/TAZ Activity in Mammalian Cells

  • Protocol
  • First Online:
The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

This chapter describes the luciferase assays that are available to monitor YAP/TAZ activity in cell lines and to study their regulation, including the choice for the normalizer, a description of the main YAP-/TAZ-responsive luciferase reporters used so far by the community, and technical notes and experimental considerations on the most appropriate positive controls. Some specific examples are provided to use luciferase assays as the basis to distinguish between Hippo-mediated and phosphorylation-mediated regulatory events and regulatory events that regulate YAP/TAZ independent of these inputs. Finally, typical experimental protocols are outlined briefly for an easier setup of YAP/TAZ luciferase assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–1241. https://doi.org/10.1101/gad.888601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133. https://doi.org/10.1016/j.cell.2007.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W et al (2010) Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 24:290–300. https://doi.org/10.1101/gad.1865310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mesrouze Y, Bokhovchuk F, Meyerhofer M, Fontana P, Zimmermann C, Martin T, et al (2017) Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. eLife 6. https://doi.org/10.7554/eLife.25068

  5. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B et al (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17:1218–1227. https://doi.org/10.1038/ncb3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galli GG, Carrara M, Yuan W-C, Valdes-Quezada C, Gurung B, Pepe-Mooney B et al (2015) YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol Cell 60(2):328–337. https://doi.org/10.1016/j.molcel.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A et al (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11:e1005465. https://doi.org/10.1371/journal.pgen.1005465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL et al (2014) A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16:108–117. https://doi.org/10.1038/ncb2884

    Article  CAS  PubMed  Google Scholar 

  9. Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C, Sasaki H et al (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30:2325–2335. https://doi.org/10.1038/emboj.2011.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA et al (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ribeiro PS, Josué F, Wepf A, Wehr MC, Rinner O, Kelly G et al (2010) Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell 39:521–534. https://doi.org/10.1016/j.molcel.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Heidary Arash E, Shiban A, Song S, Attisano L (2017) MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 18:420–436. https://doi.org/10.15252/embr.201642455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–1370. https://doi.org/10.15252/embj.201490379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McLean BG, Lee KS, Simpson PC, Farrance IKG (2003) Basal and alpha1-adrenergic-induced activity of minimal rat betaMHC promoters in cardiac myocytes requires multiple TEF-1 but not NFAT binding sites. J Mol Cell Cardiol 35:461–471

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X et al (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci 111:E89–E98. https://doi.org/10.1073/pnas.1319190110

    Article  CAS  PubMed  Google Scholar 

  16. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  17. Mahoney WM, Hong J-H, Yaffe MB, Farrance IKG (2005) The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 388:217–225. https://doi.org/10.1042/BJ20041434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Couzens AL, Knight JDR, Kean MJ, Teo G, Weiss A, Dunham WH et al (2013) Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 6:rs15–rs15. https://doi.org/10.1126/scisignal.2004712

    Article  CAS  PubMed  Google Scholar 

  19. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1971. https://doi.org/10.1101/gad.1664408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M et al (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19:6778–6791. https://doi.org/10.1093/emboj/19.24.6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong J-H, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078. https://doi.org/10.1126/science.1110955

    Article  CAS  PubMed  Google Scholar 

  22. Murakami M, Nakagawa M, Olson EN, Nakagawa O (2005) A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci U S A 102:18034–18039. https://doi.org/10.1073/pnas.0509109102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wada K-I, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914. https://doi.org/10.1242/dev.070987

    Article  CAS  PubMed  Google Scholar 

  25. Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68. https://doi.org/10.1101/gad.173435.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H et al (2013) cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 32:1543–1555. https://doi.org/10.1038/emboj.2013.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu F-X, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y et al (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27:1223–1232. https://doi.org/10.1101/gad.219402.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M et al (2015) Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 17:793–803. https://doi.org/10.1038/ncb3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S et al (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16:357–366. https://doi.org/10.1038/ncb2936

    Article  CAS  PubMed  Google Scholar 

  30. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312. https://doi.org/10.1152/physrev.00005.2014

    Article  CAS  PubMed  Google Scholar 

  31. Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W, Zhao D et al (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285:37159–37169. https://doi.org/10.1074/jbc.M110.152942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwan J, Sczaniecka A, Arash EH, Nguyen L, Chen C-C, Ratkovic S et al (2016) DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 30:2696–2709. https://doi.org/10.1101/gad.284539.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW et al (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357. https://doi.org/10.1038/ncomms9357

    Article  CAS  PubMed  Google Scholar 

  34. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059. https://doi.org/10.1016/j.cell.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  35. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S et al (2012) Role of TAZ as mediator of Wnt signaling. Cell 151:1443–1456. https://doi.org/10.1016/j.cell.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  36. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772. https://doi.org/10.1016/j.cell.2011.09.048

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirio Dupont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupont, S. (2019). Luciferase Reporter Assays to Determine YAP/TAZ Activity in Mammalian Cells. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics