Skip to main content

The Power of Drosophila Genetics: The Discovery of the Hippo Pathway

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

The Hippo Pathway comprises a vast network of components that integrate diverse signals including mechanical cues and cell surface or cell-surface-associated molecules to define cellular outputs of growth, proliferation, cell fate, and cell survival on both the cellular and tissue level. Because of the importance of the regulators, core components, and targets of this pathway in human health and disease, individual components were often identified by efforts in mammalian models or for a role in a specific process such as stress response or cell death. However, multiple components were originally discovered in the Drosophila system, and the breakthrough of conceiving that these components worked together in a signaling pathway came from a series of Drosophila genetic screens and fundamental genetic and phenotypic characterization efforts. In this chapter, we will review the original discoveries leading to the conceptual framework of these components as a tumor suppressor network. We will review chronologically the early efforts that established our initial understanding of the core machinery that then launched the growing and vibrant field to be discussed throughout later chapters of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK et al (2004) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  Google Scholar 

  2. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  3. Dang DT, Perrimon N (1992) Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev Genet 13:367–375

    Article  CAS  PubMed  Google Scholar 

  4. Harrison DA, Perrimon N (1993) Simple and efficient generation of marked clones in Drosophila. Curr Biol 3:424–433

    Article  CAS  PubMed  Google Scholar 

  5. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  6. Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001) Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413:311–316

    Article  CAS  PubMed  Google Scholar 

  7. Moberg KH, Mukherjee A, Veraksa A, Artavanis-Tsakonas S, Hariharan IK (2004) The Drosophila F box protein archipelago regulates dMyc protein levels in vivo. Curr Biol 14:965–974

    Article  CAS  PubMed  Google Scholar 

  8. Mills K, Daish T, Harvey KF, Pfleger CM, Hariharan IK, Kumar S (2006) The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death. J Cell Biol 172:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355

    Article  CAS  PubMed  Google Scholar 

  10. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D et al (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478

    Article  CAS  PubMed  Google Scholar 

  11. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ et al (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730

    Article  CAS  PubMed  Google Scholar 

  12. Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063

    CAS  PubMed  Google Scholar 

  13. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    Article  CAS  PubMed  Google Scholar 

  14. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467

    Article  CAS  PubMed  Google Scholar 

  15. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and Warts. Cell 114:445–456

    Article  CAS  PubMed  Google Scholar 

  16. Pantalacci S, Tapon N, Léopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927

    Article  CAS  PubMed  Google Scholar 

  17. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920

    Article  CAS  PubMed  Google Scholar 

  18. Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N et al (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675–685

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434

    Article  CAS  PubMed  Google Scholar 

  21. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36

    Article  CAS  PubMed  Google Scholar 

  22. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD (2006) Delineation of a fat tumor suppressor pathway. Nat Genet 38:1142–1150

    Article  CAS  PubMed  Google Scholar 

  23. Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C et al (2006) The fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16:2090–2100

    Article  CAS  PubMed  Google Scholar 

  24. Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H (2006) The tumor-suppressor gene fat controls tissue growth upstream of expanded in the Hippo signaling pathway. Curr Biol 16:2081–2089

    Article  CAS  PubMed  Google Scholar 

  25. Bennett FC, Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor scalloped mediates Hippo signaling in organ size control. Dev Cell 14:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu S, Liu Y, Zheng Y, Do J, Pan D (2008) The TEAD/TEF family protein scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14:388–398

    Article  CAS  PubMed  Google Scholar 

  28. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the Hippo tumor-suppressor pathway in Drosophila. Curr Biol 18:435–441

    Article  CAS  PubMed  Google Scholar 

  29. Leevers SJ, McNeill H (2005) Controlling the size of organs and organisms. Curr Opin Cell Biol 17:604–609

    Article  CAS  PubMed  Google Scholar 

  30. Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt phosphorylates the yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11:11–23

    Article  CAS  PubMed  Google Scholar 

  31. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh H, Irvine KD (2008) In vivo regulation of Yorkie phosphorylation and localization. Development 135:1081–1088

    Article  CAS  PubMed  Google Scholar 

  33. Ren F, Zhang L, Jiang J (2010) Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337:303–312

    Article  CAS  PubMed  Google Scholar 

  34. Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D et al (2014) An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 33:1218–1228

    Article  CAS  PubMed  Google Scholar 

  35. Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20:1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107:21064–21069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding R, Weynans K, Bossing T, Barros CS, Berger C (2016) The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun 7:10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keder A, Rives-Quinto N, Aerne BL, Franco M, Tapon N, Carmena A (2015) The hippo pathway core cassette regulates asymmetric cell division. Curr Biol 25:2739–2750

    Article  CAS  PubMed  Google Scholar 

  41. Dewey EB, Sanchez D, Johnston CA (2015) Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie. Curr Biol 25:2751–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lucas EP, Khanal I, Gaspar P, Fletcher GC, Polesello C, Tapon N et al (2013) The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J Cell Biol 201:875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dutta S, Baehrecke EH (2008) Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 18:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F (2011) Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138:2237–2246

    Article  CAS  Google Scholar 

  45. Marcinkevicius E, Zallen JA (2013) Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin fat. Development 140:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ilanges A, Jahanshahi M, Balobin DM, Pfleger CM (2013) Alcohol interacts with genetic alteration of the Hippo tumor suppressor pathway to modulate tissue growth in drosophila. PLoS One 8:e78880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emoto K, Parrish JZ, Jan LY, Jan YN (2006) The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443:210–213

    Article  CAS  PubMed  Google Scholar 

  48. Jahanshahi M, Hsiao K, Jenny A, Pfleger CM (2016) The Hippo pathway targets Rae1 to regulate mitosis and organ size and to feed back to regulate upstream components Merlin, Hippo, and Warts. PLoS Genet 12:e1006198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Genevet A, Polesello C, Blight K, Robertson F, Collinson LM, Pichaud F et al (2009) The Hippo pathway regulates apical-domain size independently of its growth-control function. J Cell Sci 122:2360–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verghese S, Waghmare I, Kwon H, Hanes K, Kango-Singh M (2012) Scribble acts in the Drosophila fat-hippo pathway to regulate warts activity. PLoS One 7:e47173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki et al (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30:2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rauskolb C, Pan G, Reddy BV, Oh H, Irvine KD (2011) Zyxin links fat signaling to the hippo pathway. PLoS Biol 9:e1000624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rauskolb C, Sun S, Sun G, Pan Y, Irvine KD (2014) Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158:143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaspar P, Holder MV, Aerne BL, Janody F, Tapon N (2015) Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 25:679–689

    Article  CAS  PubMed  Google Scholar 

  55. Deng H, Wang W, Yu J, Zheng Y, Qing Y, Pan D (2015) Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. elife 4:e06567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ (2015) The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 34:940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong KK, Li W, An Y, Duan Y, Li Z, Kang Y et al (2015) β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network. J Biol Chem 290:6397–6407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E et al (2013) Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 15:61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aerne BL, Gailite I, Sims D, Tapon N (2015) Hippo stabilises its adaptor Salvador by antagonising the HECT ubiquitin ligase Herc4. PLoS One 10:e0131113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hirabayashi S, Cagan RL (2015) Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. elife 4:e08501

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D (2013) Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154:1342–1355

    Article  CAS  PubMed  Google Scholar 

  62. Sun S, Reddy BVVG, Irvine KD (2015) Localization of Hippo signalling complexes and Warts activation in vivo. Nat Commun 6:8402

    Article  CAS  PubMed  Google Scholar 

  63. Mikeladze-Dvali T, Wernet MF, Pistillo D, Mazzoni EO, Teleman AA, Chen YW et al (2005) The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122:775–787

    Article  CAS  PubMed  Google Scholar 

  64. Jukam D, Desplan C (2011) Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and melted specifies and maintains postmitotic neuronal fate. Dev Cell 21:874–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jukam D, Xie B, Rister J, Terrell D, Charlton-Perkins M, Pistillo D et al (2013) Opposite feedbacks in the Hippo pathway for growth control and neural fate. Science 342:1238016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ziosi M, Baena-López LA, Grifoni D, Froldi F, Pession A, Garoia F et al (2010) dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6:e1001140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Meng Z, Moroishi T, Guan KL (2006) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17

    Article  CAS  Google Scholar 

  69. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Watt KI, Harvey KF, Gregorevic P (2017) Regulation of tissue growth by the mammalian Hippo signaling pathway. Front Physiol 8:942

    Article  PubMed  PubMed Central  Google Scholar 

  71. Milton CC, Grusche FA, Degoutin JL, Yu E, Dai Q, Lai EC et al (2014) The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr Biol 24:2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164:406–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sing A, Tsatskis Y, Fabian L, Hester I, Rosenfeld R, Serricchio M et al (2014) The atypical cadherin fat directly regulates mitochondrial function and metabolic state. Cell 158:1293–1308

    Article  CAS  PubMed  Google Scholar 

  74. Colombani J, Polesello C, Josué F, Tapon N (2006) Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage. Curr Biol 16:1453–1458

    Article  CAS  PubMed  Google Scholar 

  75. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774

    Article  CAS  PubMed  Google Scholar 

  76. Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16:1895–1904

    Article  CAS  PubMed  Google Scholar 

  77. Polesello C, Huelsmann S, Brown NH, Tapon N (2006) The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 16:2459–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tyler DM, Li W, Zhuo N, Pellock B, Baker NE (2007) Genes affecting cell competition in Drosophila. Genetics 175:643–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei X, Shimizu T, Lai ZC (2007) Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J 26:1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pellock BJ, Buff E, White K, Hariharan IK (2007) The Drosophila tumor suppressors expanded and Merlin differentially regulate cell cycle exit, apoptosis, and wingless signaling. Dev Biol 304:102–115

    Article  CAS  PubMed  Google Scholar 

  81. Shimizu T, Ho LL, Lai ZC (2008) The mob as tumor suppressor gene is essential for early development and regulates tissue growth in Drosophila. Genetics 178:957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T et al (2009) The FERM-domain protein expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16:411–420

    Article  CAS  PubMed  Google Scholar 

  83. Oh H, Reddy BV, Irvine KD (2009) Phosphorylation-independent repression of Yorkie in fat-Hippo signaling. Dev Biol 335:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 23:2307–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamaratoglu F, Gajewski K, Sansores-Garcia L, Morrison C, Tao C, Halder G (2009) The Hippo tumor-suppressor pathway regulates apical-domain size in parallel to tissue growth. J Cell Sci 122:2351–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C et al (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 107:15810–15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20:573–581

    Article  CAS  PubMed  Google Scholar 

  88. Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y et al (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to expanded. Proc Natl Acad Sci USA 107:10532–10537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parsons LM, Grzeschik NA, Allott ML, Richardson HE (2010) Lgl/aPKC and Crb regulate the Salvador/Warts/Hippo pathway. Fly 4:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. Curr Biol 20:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hafezi Y, Bosch JA, Hariharan IK (2012) Differences in levels of the transmembrane protein Crumbs can influence cell survival at clonal boundaries. Dev Biol 368:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H (2010) The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 18:309–316

    Article  CAS  PubMed  Google Scholar 

  93. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18:300–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Das Thakur M, Feng Y, Jagannathan R, Seppa MJ, Skeath JB, Longmore GD (2010) Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol 20:657–662

    Article  CAS  PubMed  Google Scholar 

  96. Ribeiro PS, Josué F, Wepf A, Wehr MC, Rinner O, Kelly G et al (2010) Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell 39:521–534

    Article  CAS  PubMed  Google Scholar 

  97. Oh H, Irvine KD (2011) Cooperative regulation of growth by Yorkie and Mad through bantam. Dev Cell 20:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boggiano JC, Vanderzalm PJ, Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21:888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Poon CL, Lin JI, Zhang X, Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 21:896–906

    Article  CAS  PubMed  Google Scholar 

  100. Verghese S, Bedi S, Kango-Singh M (2012) Hippo signalling controls Dronc activity to regulate organ size in Drosophila. Cell Death Differ 19:1664–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Herranz H, Hong X, Cohen SM (2012) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22:651–657

    Article  CAS  PubMed  Google Scholar 

  102. Yue T, Tian A, Jiang J (2012) The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Dev Cell 22:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kagey JD, Brown JA, Moberg KH (2012) Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Dev 129:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ye X, Deng Y, Lai ZC (2012) Akt is negatively regulated by Hippo signaling for growth inhibition in Drosophila. Dev Biol 369:115–123

    Article  CAS  PubMed  Google Scholar 

  105. Sansores-Garcia L, Atkins M, Moya IM, Shahmoradgoli M, Tao C, Mills GB et al (2013) Mask is required for the activity of the Hippo pathway effector Yki/YAP. Curr Biol 23:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sidor CM, Brain R, Thompson BJ (2013) Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway. Curr Biol 23:223–238

    Article  CAS  PubMed  Google Scholar 

  107. Oh H, Slattery M, Ma L, Crofts A, White KP, Mann RS et al (2013) Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep 3:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reddy BV, Irvine KD (2013) Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24:459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B et al (2013) The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 25:388–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang HL, Wang S, Yin MX, Dong L, Wang C, Wu W et al (2013) Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-Salvador association. PLoS Biol 11:e1001620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun G, Irvine KD (2013) Ajuba family proteins link JNK to Hippo signaling. Sci Signal 6:ra81

    Article  PubMed  CAS  Google Scholar 

  112. Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H et al (2015) The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 34:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D (2015) Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase Cascade. Dev Cell 34:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li S, Cho YS, Yue T, Ip YT, Jiang J (2015) Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discov 1:15038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Drosophila community and the broader Hippo Pathway field. We also apologize that we could not cover every advance in the field in this chapter. This review chapter was meant to review the early events in the conception of the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathie M. Pfleger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gokhale, R., Pfleger, C.M. (2019). The Power of Drosophila Genetics: The Discovery of the Hippo Pathway. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics