Skip to main content

Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification

  • Protocol
  • First Online:
Lactic Acid Bacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1887))

Abstract

The gradual accumulation of heavy metals can have detrimental effects on health. Lactic acid bacteria (LAB) are common microbes used as probiotics; various LAB strains are consumed in food products, especially in fermented foods. Many studies have suggested that LAB with high affinity to harmful heavy metals can be used as efficient detoxification tools. Accordingly, it is important to test the biosorption of various heavy metals, e.g., cadmium, lead, arsenic, and mercury, by LAB. Here, I describe protocols to quantify the binding ability of LAB and to identify their heavy metal binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29. https://doi.org/10.1016/S0168-1605(96)01233-0

    Article  CAS  PubMed  Google Scholar 

  2. Feord J (2002) Lactic acid bacteria in a changing legislative environment. Antonie Van Leeuwenhoek 82(1–4):353–360

    Article  CAS  Google Scholar 

  3. Savaiano DA, Kotz C (1989) Recent advances in the management of lactose intolerance. ASDC J Dent Child 56(3):228–233

    CAS  PubMed  Google Scholar 

  4. Danielson AD, Peo ER,J, Shahani KM, Lewis AJ, Whalen PJ, Amer MA (1989) Anticholesteremic property of Lactobacillus acidophilus yogurt fed to mature boars. J Anim Sci 67(4):966–974

    Article  CAS  Google Scholar 

  5. Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56(Suppl 4):S21–S26. https://doi.org/10.1038/sj.ejcn.1601658

    Article  CAS  PubMed  Google Scholar 

  6. Lim BK, Mahendran R, Lee YK, Bay BH (2002) Chemopreventive effect of Lactobacillus rhamnosus on growth of a subcutaneously implanted bladder cancer cell line in the mouse. Jpn J Cancer Res 93(1):36–41

    Article  CAS  Google Scholar 

  7. Varma P, Dinesh KR, Menon KK, Biswas R (2010) Lactobacillus fermentum isolated from human colonic mucosal biopsy inhibits the growth and adhesion of enteric and foodborne pathogens. J Food Sci 75(9):M546–M551. https://doi.org/10.1111/j.1750-3841.2010.01818.x

    Article  PubMed  Google Scholar 

  8. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Phys 276(4 Pt 1):G941–G950

    CAS  Google Scholar 

  9. Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W (2007) The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol 115(3):307–312. https://doi.org/10.1016/j.ijfoodmicro.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49(2):377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tahri K, Grill JP, Schneider F (1996) Bifidobacteria strain behavior toward cholesterol: coprecipitation with bile salts and assimilation. Curr Microbiol 33(3):187–193

    Article  CAS  Google Scholar 

  12. Usman HA (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82(2):243–248. https://doi.org/10.3168/jds.S0022-0302(99)75229-X

    Article  CAS  PubMed  Google Scholar 

  13. Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K, Wei MQ (2012) Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J Appl Microbiol 112:1193–1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x

    Article  CAS  PubMed  Google Scholar 

  14. Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 52(9):877–885. https://doi.org/10.1139/w06-043

    Article  CAS  PubMed  Google Scholar 

  15. Lin Z, Zhou C, Wu J, Zhou J, Wang L (2005) A further insight into the mechanism of ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1195–1200. https://doi.org/10.1016/j.saa.2004.06.041

    Article  CAS  PubMed  Google Scholar 

  16. Schut S, Zauner S, Hampel G, Konig H, Claus H (2011) Biosorption of copper by wine-relevant lactobacilli. Int J Food Microbiol 145(1):126–131. https://doi.org/10.1016/j.ijfoodmicro.2010.11.039

    Article  CAS  PubMed  Google Scholar 

  17. Kinoshita H, Ohtake F, Ariga Y, Kimura K (2016) Comparison and characterization of biosorption by Weissella viridescens MYU 205 of periodic group 12 metal ions. Anim Sci J 87(2):271–276. https://doi.org/10.1111/asj.12425

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita H, Sohma Y, Ohtake F, Ishida M, Kawai Y, Kitazawa H, Saito T, Kimura K (2013) Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res Microbiol 164(7):701–709. https://doi.org/10.1016/j.resmic.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Kinoshita H, Sato Y, Ohtake F, Ishida M, Komoda T, Kitazawa H, Saito T, Kimura K (2015) In vitro mass-screening of lactic acid bacteria as potential biosorbents of cesium and strontium ions. J Microbiol Biotech Food Sci 4(5):383–386. https://doi.org/10.15414/jmbfs.2015.4.5.383-386

    Article  CAS  Google Scholar 

  20. Zhai Q, Wang G, Zhao J, Liu X, Tian F, Zhang H, Chen W (2013) Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol 79(5):1508–1515. https://doi.org/10.1128/AEM.03417-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Chen W (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150(1–3):264–271. https://doi.org/10.1007/s12011-012-9462-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kinoshita, H. (2019). Biosorption of Heavy Metals by Lactic Acid Bacteria for Detoxification. In: Kanauchi, M. (eds) Lactic Acid Bacteria. Methods in Molecular Biology, vol 1887. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8907-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8907-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8906-5

  • Online ISBN: 978-1-4939-8907-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics